These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 35947158)
1. Limited clinical utility of a machine learning revision prediction model based on a national hip arthroscopy registry. Martin RK; Wastvedt S; Lange J; Pareek A; Wolfson J; Lund B Knee Surg Sports Traumatol Arthrosc; 2023 Jun; 31(6):2079-2089. PubMed ID: 35947158 [TBL] [Abstract][Full Text] [Related]
2. Predicting the Risk of Subsequent Hip Surgery Before Primary Hip Arthroscopy for Femoroacetabular Impingement Syndrome: A Machine Learning Analysis of Preoperative Risk Factors in Hip Preservation. Haeberle HS; Ramkumar PN; Karnuta JM; Sullivan S; Sink EL; Kelly BT; Ranawat AS; Nwachukwu BU Am J Sports Med; 2021 Aug; 49(10):2668-2676. PubMed ID: 34232753 [TBL] [Abstract][Full Text] [Related]
3. Clinical outcomes after revision hip arthroscopy in patients with femoroacetabular impingement syndrome (FAIS) are inferior compared to primary procedures. Results from the Danish Hip Arthroscopy Registry (DHAR). Mygind-Klavsen B; Nielsen TG; Lund B; Lind M Knee Surg Sports Traumatol Arthrosc; 2021 Apr; 29(4):1340-1348. PubMed ID: 32653932 [TBL] [Abstract][Full Text] [Related]
4. Association Between Preoperative Patient Factors and Clinically Meaningful Outcomes After Hip Arthroscopy for Femoroacetabular Impingement Syndrome: A Machine Learning Analysis. Kunze KN; Polce EM; Clapp IM; Alter T; Nho SJ Am J Sports Med; 2022 Mar; 50(3):746-756. PubMed ID: 35006010 [TBL] [Abstract][Full Text] [Related]
5. Machine Learning Algorithms Predict Functional Improvement After Hip Arthroscopy for Femoroacetabular Impingement Syndrome in Athletes. Kunze KN; Polce EM; Clapp I; Nwachukwu BU; Chahla J; Nho SJ J Bone Joint Surg Am; 2021 Jun; 103(12):1055-1062. PubMed ID: 33877058 [TBL] [Abstract][Full Text] [Related]
6. Personalized Medicine Using Predictive Analytics: A Machine Learning-Based Prognostic Model for Patients Undergoing Hip Arthroscopy. Domb BG; Ouyang VW; Go CC; Gornbein JA; Shapira J; Meghpara MB; Maldonado DR; Lall AC; Rosinsky PJ Am J Sports Med; 2022 Jun; 50(7):1900-1908. PubMed ID: 35536218 [TBL] [Abstract][Full Text] [Related]
7. Editorial Commentary: Artificial Intelligence Analysis of Biomedical, Large, Clinical Registry Data Using Machine Learning Requires Tens of Thousands of Subjects and a Focus on Substantial Clinical Benefit: Minimal Clinically Important Difference Is too Low a Bar. Harris JD Arthroscopy; 2024 Apr; 40(4):1164-1167. PubMed ID: 38219135 [TBL] [Abstract][Full Text] [Related]
8. Application of Machine Learning for Predicting Clinically Meaningful Outcome After Arthroscopic Femoroacetabular Impingement Surgery. Nwachukwu BU; Beck EC; Lee EK; Cancienne JM; Waterman BR; Paul K; Nho SJ Am J Sports Med; 2020 Feb; 48(2):415-423. PubMed ID: 31869249 [TBL] [Abstract][Full Text] [Related]
9. Predicting Anterior Cruciate Ligament Reconstruction Revision: A Machine Learning Analysis Utilizing the Norwegian Knee Ligament Register. Martin RK; Wastvedt S; Pareek A; Persson A; Visnes H; Fenstad AM; Moatshe G; Wolfson J; Engebretsen L J Bone Joint Surg Am; 2022 Jan; 104(2):145-153. PubMed ID: 34662318 [TBL] [Abstract][Full Text] [Related]
10. External Validation of a Machine Learning Algorithm for Predicting Clinically Meaningful Functional Improvement After Arthroscopic Hip Preservation Surgery. Kunze KN; Kaidi A; Madjarova S; Polce EM; Ranawat AS; Nawabi DH; Kelly BT; Nho SJ; Nwachukwu BU Am J Sports Med; 2022 Nov; 50(13):3593-3599. PubMed ID: 36135373 [TBL] [Abstract][Full Text] [Related]
11. Danish Hip Arthroscopy Registry: predictors of outcome in patients with femoroacetabular impingement (FAI). Mygind-Klavsen B; Lund B; Nielsen TG; Maagaard N; Kraemer O; Hölmich P; Winge S; Lind M Knee Surg Sports Traumatol Arthrosc; 2019 Oct; 27(10):3110-3120. PubMed ID: 29696319 [TBL] [Abstract][Full Text] [Related]
12. Can Machine-learning Algorithms Predict Early Revision TKA in the Danish Knee Arthroplasty Registry? El-Galaly A; Grazal C; Kappel A; Nielsen PT; Jensen SL; Forsberg JA Clin Orthop Relat Res; 2020 Sep; 478(9):2088-2101. PubMed ID: 32667760 [TBL] [Abstract][Full Text] [Related]
13. Predicting subjective failure of ACL reconstruction: a machine learning analysis of the Norwegian Knee Ligament Register and patient reported outcomes. Martin RK; Wastvedt S; Pareek A; Persson A; Visnes H; Fenstad AM; Moatshe G; Wolfson J; Engebretsen L J ISAKOS; 2022 Jun; 7(3):1-9. PubMed ID: 36178391 [TBL] [Abstract][Full Text] [Related]
14. Stratified care in hip arthroscopy: can we predict successful and unsuccessful outcomes? Development and external temporal validation of multivariable prediction models. Ishøi L; Thorborg K; Kallemose T; Kemp JL; Reiman MP; Nielsen MF; Hölmich P Br J Sports Med; 2023 Aug; 57(16):1025-1034. PubMed ID: 37001982 [TBL] [Abstract][Full Text] [Related]
15. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction? Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466 [TBL] [Abstract][Full Text] [Related]
16. Radiographic Indices Are Not Predictive of Clinical Outcomes Among 1735 Patients Indicated for Hip Arthroscopic Surgery: A Machine Learning Analysis. Ramkumar PN; Karnuta JM; Haeberle HS; Sullivan SW; Nawabi DH; Ranawat AS; Kelly BT; Nwachukwu BU Am J Sports Med; 2020 Oct; 48(12):2910-2918. PubMed ID: 32924530 [TBL] [Abstract][Full Text] [Related]
18. Hip Arthroscopy for Femoroacetabular Impingement Syndrome in Adolescents Provides Clinically Significant Outcome Benefit at Minimum 5-Year Follow-Up. Beck EC; Nwachuckwu BU; Jan K; Nho SJ Arthroscopy; 2021 May; 37(5):1467-1473.e2. PubMed ID: 33359159 [TBL] [Abstract][Full Text] [Related]
19. Development and Internal Validation of Supervised Machine Learning Algorithms for Predicting Clinically Significant Functional Improvement in a Mixed Population of Primary Hip Arthroscopy. Kunze KN; Polce EM; Nwachukwu BU; Chahla J; Nho SJ Arthroscopy; 2021 May; 37(5):1488-1497. PubMed ID: 33460708 [TBL] [Abstract][Full Text] [Related]
20. Machine Learning Did Not Outperform Conventional Competing Risk Modeling to Predict Revision Arthroplasty. Oosterhoff JHF; de Hond AAH; Peters RM; van Steenbergen LN; Sorel JC; Zijlstra WP; Poolman RW; Ring D; Jutte PC; Kerkhoffs GMMJ; Putter H; Steyerberg EW; Doornberg JN; Clin Orthop Relat Res; 2024 Aug; 482(8):1472-1482. PubMed ID: 38470976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]