These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 35947314)
1. The Polar Fox Lagoon in Siberia harbours a community of Bathyarchaeota possessing the potential for peptide fermentation and acetogenesis. Berben T; Forlano Bó F; In 't Zandt MH; Yang S; Liebner S; Welte CU Antonie Van Leeuwenhoek; 2022 Oct; 115(10):1229-1244. PubMed ID: 35947314 [TBL] [Abstract][Full Text] [Related]
2. Greenhouse gas production and lipid biomarker distribution in Yedoma and Alas thermokarst lake sediments in Eastern Siberia. Jongejans LL; Liebner S; Knoblauch C; Mangelsdorf K; Ulrich M; Grosse G; Tanski G; Fedorov AN; Konstantinov PY; Windirsch T; Wiedmann J; Strauss J Glob Chang Biol; 2021 Jun; 27(12):2822-2839. PubMed ID: 33774862 [TBL] [Abstract][Full Text] [Related]
3. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Anthony KM; Zimov SA; Grosse G; Jones MC; Anthony PM; Chapin FS; Finlay JC; Mack MC; Davydov S; Frenzel P; Frolking S Nature; 2014 Jul; 511(7510):452-6. PubMed ID: 25043014 [TBL] [Abstract][Full Text] [Related]
4. Phylogenomic Analysis of Metagenome-Assembled Genomes Deciphered Novel Acetogenic Nitrogen-Fixing Deb S; Das SK Microbiol Spectr; 2022 Jun; 10(3):e0035222. PubMed ID: 35647693 [TBL] [Abstract][Full Text] [Related]
5. Diverse hydrogen production and consumption pathways influence methane production in ruminants. Greening C; Geier R; Wang C; Woods LC; Morales SE; McDonald MJ; Rushton-Green R; Morgan XC; Koike S; Leahy SC; Kelly WJ; Cann I; Attwood GT; Cook GM; Mackie RI ISME J; 2019 Oct; 13(10):2617-2632. PubMed ID: 31243332 [TBL] [Abstract][Full Text] [Related]
6. Growth of sedimentary Yu T; Wu W; Liang W; Lever MA; Hinrichs KU; Wang F Proc Natl Acad Sci U S A; 2018 Jun; 115(23):6022-6027. PubMed ID: 29773709 [TBL] [Abstract][Full Text] [Related]
7. Metabolic Potential for Reductive Acetogenesis and a Novel Energy-Converting [NiFe] Hydrogenase in Loh HQ; Hervé V; Brune A Front Microbiol; 2020; 11():635786. PubMed ID: 33613473 [TBL] [Abstract][Full Text] [Related]
9. Diverse and unconventional methanogens, methanotrophs, and methylotrophs in metagenome-assembled genomes from subsurface sediments of the Slate River floodplain, Crested Butte, CO, USA. Rasmussen AN; Tolar BB; Bargar JR; Boye K; Francis CA mSystems; 2024 Jul; 9(7):e0031424. PubMed ID: 38940520 [TBL] [Abstract][Full Text] [Related]
10. Metabolic potentials of archaeal lineages resolved from metagenomes of deep Costa Rica sediments. Farag IF; Biddle JF; Zhao R; Martino AJ; House CH; León-Zayas RI ISME J; 2020 Jun; 14(6):1345-1358. PubMed ID: 32066876 [TBL] [Abstract][Full Text] [Related]
11. Formate and Hydrogen as Electron Shuttles in Terminal Fermentations in an Oligotrophic Freshwater Lake Sediment. Montag D; Schink B Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097443 [TBL] [Abstract][Full Text] [Related]
12. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. He Y; Li M; Perumal V; Feng X; Fang J; Xie J; Sievert SM; Wang F Nat Microbiol; 2016 Apr; 1(6):16035. PubMed ID: 27572832 [TBL] [Abstract][Full Text] [Related]
13. Microbial methane cycling in sediments of Arctic thermokarst lagoons. Yang S; Anthony SE; Jenrich M; In 't Zandt MH; Strauss J; Overduin PP; Grosse G; Angelopoulos M; Biskaborn BK; Grigoriev MN; Wagner D; Knoblauch C; Jaeschke A; Rethemeyer J; Kallmeyer J; Liebner S Glob Chang Biol; 2023 May; 29(10):2714-2731. PubMed ID: 36811358 [TBL] [Abstract][Full Text] [Related]
14. Syntrophomonas wolfei Uses an NADH-Dependent, Ferredoxin-Independent [FeFe]-Hydrogenase To Reoxidize NADH. Losey NA; Mus F; Peters JW; Le HM; McInerney MJ Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28802265 [No Abstract] [Full Text] [Related]
15. Distinct microbial hydrogen and reductant disposal pathways explain interbreed variations in ruminant methane yield. Li Q; Ma Z; Huo J; Zhang X; Wang R; Zhang S; Jiao J; Dong X; Janssen PH; Ungerfeld EM; Greening C; Tan Z; Wang M ISME J; 2024 Jan; 18(1):. PubMed ID: 38365243 [TBL] [Abstract][Full Text] [Related]
16. H2-independent growth of the hydrogenotrophic methanogen Methanococcus maripaludis. Costa KC; Lie TJ; Jacobs MA; Leigh JA mBio; 2013 Feb; 4(2):. PubMed ID: 23443005 [TBL] [Abstract][Full Text] [Related]
17. Anaerobic methanotrophic communities thrive in deep submarine permafrost. Winkel M; Mitzscherling J; Overduin PP; Horn F; Winterfeld M; Rijkers R; Grigoriev MN; Knoblauch C; Mangelsdorf K; Wagner D; Liebner S Sci Rep; 2018 Jan; 8(1):1291. PubMed ID: 29358665 [TBL] [Abstract][Full Text] [Related]
18. Methanogenesis and the Wood-Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association. Borrel G; Adam PS; Gribaldo S Genome Biol Evol; 2016 Jun; 8(6):1706-11. PubMed ID: 27189979 [TBL] [Abstract][Full Text] [Related]
19. Formate-derived H2 , a driver of hydrogenotrophic processes in the root-zone of a methane-emitting fen. Hunger S; Schmidt O; Gößner AS; Drake HL Environ Microbiol; 2016 Sep; 18(9):3106-19. PubMed ID: 26999575 [TBL] [Abstract][Full Text] [Related]
20. Methane-Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea. Skennerton CT; Chourey K; Iyer R; Hettich RL; Tyson GW; Orphan VJ mBio; 2017 Aug; 8(4):. PubMed ID: 28765215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]