These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 35947400)

  • 1. A recent update on new synthetic chiral compounds with antileishmanial activity.
    Verboni M; Olivieri D; Lucarini S
    Chirality; 2022 Oct; 34(10):1279-1297. PubMed ID: 35947400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural products as trypanocidal, antileishmanial and antimalarial drugs.
    Fournet A; Muñoz V
    Curr Top Med Chem; 2002 Nov; 2(11):1215-37. PubMed ID: 12171582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potentials of marine natural products against malaria, leishmaniasis, and trypanosomiasis parasites: a review of recent articles.
    Nweze JA; Mbaoji FN; Li YM; Yang LY; Huang SS; Chigor VN; Eze EA; Pan LX; Zhang T; Yang DF
    Infect Dis Poverty; 2021 Jan; 10(1):9. PubMed ID: 33482912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Progress in the Development of Indole-Based Compounds Active against Malaria, Trypanosomiasis and Leishmaniasis.
    Pacheco PAF; Santos MMM
    Molecules; 2022 Jan; 27(1):. PubMed ID: 35011552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of natural anti-parasitic guided development of synthetic drugs for leishmaniasis.
    Pal R; Teli G; Akhtar MJ; Matada GSP
    Eur J Med Chem; 2023 Oct; 258():115609. PubMed ID: 37421889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State-of-the-art Review on the Antiparasitic Activity of Benzimidazolebased Derivatives: Facing Malaria, Leishmaniasis, and Trypanosomiasis.
    Francesconi V; Rizzo M; Schenone S; Carbone A; Tonelli M
    Curr Med Chem; 2024; 31(15):1955-1982. PubMed ID: 37718524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the Potential of Natural Products as Antiparasitic Agents for Neglected Tropical Diseases.
    Orosco D; Mendoza AR; Meléndez CM
    Curr Top Med Chem; 2024; 24(2):89-108. PubMed ID: 37842892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antileishmanial potential of species from the family Lamiaceae: chemical and biological aspects of non-volatile compounds.
    Maciel MSP; Reis ASD; Fidelis QC
    Acta Trop; 2022 Apr; 228():106309. PubMed ID: 35032468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some Scaffolds as Anti-leishmanial Agents: A Review.
    Mahender T; Pankaj W; Kumar SP; Ankur V; Kumar SS
    Mini Rev Med Chem; 2022; 22(5):743-757. PubMed ID: 34517799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the current status of privileged N-heterocycles as antileishmanial agents.
    Razzaghi-Asl N; Sepehri S; Ebadi A; Karami P; Nejatkhah N; Johari-Ahar M
    Mol Divers; 2020 May; 24(2):525-569. PubMed ID: 31028558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Nitro (NO
    Kamdem BP; Elizabeth FI
    Curr Drug Targets; 2021; 22(4):379-398. PubMed ID: 33371845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of natural products with antileishmanial activity.
    Rocha LG; Almeida JR; Macêdo RO; Barbosa-Filho JM
    Phytomedicine; 2005 Jun; 12(6-7):514-35. PubMed ID: 16008131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microorganisms as a Potential Source of Molecules to Control Trypanosomatid Diseases.
    Chan-Bacab MJ; Reyes-Estebanez MM; Camacho-Chab JC; Ortega-Morales BO
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33806654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent researches in effective antileishmanial herbal compounds: narrative review.
    Ghodsian S; Taghipour N; Deravi N; Behniafar H; Lasjerdi Z
    Parasitol Res; 2020 Dec; 119(12):3929-3946. PubMed ID: 32803335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput screening platform for natural product-based drug discovery against 3 neglected tropical diseases: human African trypanosomiasis, leishmaniasis, and Chagas disease.
    Annang F; Pérez-Moreno G; García-Hernández R; Cordon-Obras C; Martín J; Tormo JR; Rodríguez L; de Pedro N; Gómez-Pérez V; Valente M; Reyes F; Genilloud O; Vicente F; Castanys S; Ruiz-Pérez LM; Navarro M; Gamarro F; González-Pacanowska D
    J Biomol Screen; 2015 Jan; 20(1):82-91. PubMed ID: 25332350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The chemotherapeutic potential of chalcones against leishmaniases: a review.
    Tajuddeen N; Isah MB; Suleiman MA; van Heerden FR; Ibrahim MA
    Int J Antimicrob Agents; 2018 Mar; 51(3):311-318. PubMed ID: 28668673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unveiling the Targets Involved in the Quest of Antileishmanial Leads Using In silico Methods.
    Boniface PK; Sano CM; Elizabeth FI
    Curr Drug Targets; 2020; 21(7):681-712. PubMed ID: 32003668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Antiprotozoal Profile of 3,4,5-Trisubstituted Isoxazoles.
    Rosa FA; Mendes de Souza Melo S; Pianoski KE; Poletto J; Dos Santos MG; Vieira da Silva MJ; Lazarin-Bidóia D; Volpato H; Moura S; Nakamura CV
    ChemistryOpen; 2021 Oct; 10(10):931-938. PubMed ID: 34331350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimicrobial peptides for leishmaniasis.
    Cobb SL; Denny PW
    Curr Opin Investig Drugs; 2010 Aug; 11(8):868-75. PubMed ID: 20721829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leishmaniasis: current treatment and prospects for new drugs and vaccines.
    Kedzierski L; Sakthianandeswaren A; Curtis JM; Andrews PC; Junk PC; Kedzierska K
    Curr Med Chem; 2009; 16(5):599-614. PubMed ID: 19199925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.