BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35947928)

  • 1. Leveraging negative capacitance ferroelectric materials for performance boosting of sub-10 nm graphene nanoribbon field-effect transistors: a quantum simulation study.
    Tamersit K; Moaiyeri MH; Jooq MKQ
    Nanotechnology; 2022 Aug; 33(46):. PubMed ID: 35947928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergy of Electrostatic and Chemical Doping to Improve the Performance of Junctionless Carbon Nanotube Tunneling Field-Effect Transistors: Ultrascaling, Energy-Efficiency, and High Switching Performance.
    Tamersit K; Kouzou A; Bourouba H; Kennel R; Abdelrahem M
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Projection of Vacuum Gate Dielectric Doping-Free Carbon Nanoribbon/Nanotube Field-Effect Transistors for Radiation-Immune Nanoelectronics.
    Tamersit K; Kouzou A; Rodriguez J; Abdelrahem M
    Nanomaterials (Basel); 2024 Jun; 14(11):. PubMed ID: 38869587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors.
    Hur JH; Kim DK
    Nanotechnology; 2018 May; 29(18):185202. PubMed ID: 29457778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatically Doped Junctionless Graphene Nanoribbon Tunnel Field-Effect Transistor for High-Performance Gas Sensing Applications: Leveraging Doping Gates for Multi-Gas Detection.
    Tamersit K; Kouzou A; Rodriguez J; Abdelrahem M
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38276738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Parametric Study of Armchair Graphene Nanoribbon Field Effect Transistor by Non-Equilibrium Green's Function Method.
    Hur JH
    J Nanosci Nanotechnol; 2020 Aug; 20(8):4832-4838. PubMed ID: 32126662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Sub-60 Millivolts/Decade Switching in a Metal-Insulator-Metal-Insulator-Semiconductor Transistor without a Ferroelectric Component.
    Wu P; Appenzeller J
    ACS Nano; 2021 Mar; 15(3):5158-5164. PubMed ID: 33705109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained Sub-60 mV/decade Switching via the Negative Capacitance Effect in MoS
    McGuire FA; Lin YC; Price K; Rayner GB; Khandelwal S; Salahuddin S; Franklin AD
    Nano Lett; 2017 Aug; 17(8):4801-4806. PubMed ID: 28691824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Junctionless Mode in Improving the Photosensitivity of Sub-10 nm Carbon Nanotube/Nanoribbon Field-Effect Phototransistors: Quantum Simulation, Performance Assessment, and Comparison.
    Tamersit K; Madan J; Kouzou A; Pandey R; Kennel R; Abdelrahem M
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negative Capacitance Field Effect Transistors based on Van der Waals 2D Materials.
    Chen RS; Lu Y
    Small; 2023 Oct; ():e2304445. PubMed ID: 37899295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Negative Capacitance beyond Ferroelectric Switches.
    Kumar A; Balakrishna Pillai P; Song X; De Souza MM
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19812-19819. PubMed ID: 29788714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.
    Rahmani M; Ahmadi MT; Abadi HK; Saeidmanesh M; Akbari E; Ismail R
    Nanoscale Res Lett; 2013 Jan; 8(1):55. PubMed ID: 23363692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eliminating Ferroelectric Hysteresis in All-Two-Dimensional Gate-Stack Negative-Capacitance Transistors.
    Quan H; Meng D; Ma X; Qiu C
    ACS Appl Mater Interfaces; 2023 Sep; 15(38):45076-45082. PubMed ID: 37721972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of oxide gate electrode for ferroelectric field-effect transistors with metal-ferroelectric-metal-insulator-semiconductor gate stack using undoped HfO
    Choi SN; Moon SE; Yoon SM
    Nanotechnology; 2021 Feb; 32(8):085709. PubMed ID: 33176285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subthreshold swing improvement in MoS
    Nourbakhsh A; Zubair A; Joglekar S; Dresselhaus M; Palacios T
    Nanoscale; 2017 May; 9(18):6122-6127. PubMed ID: 28447680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanowire Tunnel FET with Simultaneously Reduced Subthermionic Subthreshold Swing and Off-Current due to Negative Capacitance and Voltage Pinning Effects.
    Saeidi A; Rosca T; Memisevic E; Stolichnov I; Cavalieri M; Wernersson LE; Ionescu AM
    Nano Lett; 2020 May; 20(5):3255-3262. PubMed ID: 32293188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trade-off analysis between g
    Ahmad MA; Kumar P; Mech BC; Kumar J
    Sci Rep; 2024 May; 14(1):10218. PubMed ID: 38702353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High I on/I off current ratio graphene field effect transistor: the role of line defect.
    Tajarrod MH; Saghai HR
    Beilstein J Nanotechnol; 2015; 6():2062-8. PubMed ID: 26665077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An all two-dimensional vertical heterostructure graphene/CuInP
    Liaqat A; Yin Y; Hussain S; Wen W; Wu J; Guo Y; Dang C; Ho CH; Liu Z; Yu P; Cheng Z; Xie L
    Nanotechnology; 2021 Dec; 33(12):. PubMed ID: 34874305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative-Capacitance Fin Field-Effect Transistor Beyond the 7-nm Node.
    Chen KT; Qiu YY; Tang M; Lee CF; Dai YL; Lee MH; Chang ST
    J Nanosci Nanotechnol; 2018 Oct; 18(10):6873-6878. PubMed ID: 29954505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.