These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 35947966)

  • 41. CIDER: an interpretable meta-clustering framework for single-cell RNA-seq data integration and evaluation.
    Hu Z; Ahmed AA; Yau C
    Genome Biol; 2021 Dec; 22(1):337. PubMed ID: 34903266
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A test metric for assessing single-cell RNA-seq batch correction.
    Büttner M; Miao Z; Wolf FA; Teichmann SA; Theis FJ
    Nat Methods; 2019 Jan; 16(1):43-49. PubMed ID: 30573817
    [TBL] [Abstract][Full Text] [Related]  

  • 43. HiDi: an efficient reverse engineering schema for large-scale dynamic regulatory network reconstruction using adaptive differentiation.
    Deng Y; Zenil H; Tegnér J; Kiani NA
    Bioinformatics; 2017 Dec; 33(24):3964-3972. PubMed ID: 28961895
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scuba: scalable kernel-based gene prioritization.
    Zampieri G; Tran DV; Donini M; Navarin N; Aiolli F; Sperduti A; Valle G
    BMC Bioinformatics; 2018 Jan; 19(1):23. PubMed ID: 29370760
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Benchmarking single-cell RNA-sequencing protocols for cell atlas projects.
    Mereu E; Lafzi A; Moutinho C; Ziegenhain C; McCarthy DJ; Álvarez-Varela A; Batlle E; Sagar ; Grün D; Lau JK; Boutet SC; Sanada C; Ooi A; Jones RC; Kaihara K; Brampton C; Talaga Y; Sasagawa Y; Tanaka K; Hayashi T; Braeuning C; Fischer C; Sauer S; Trefzer T; Conrad C; Adiconis X; Nguyen LT; Regev A; Levin JZ; Parekh S; Janjic A; Wange LE; Bagnoli JW; Enard W; Gut M; Sandberg R; Nikaido I; Gut I; Stegle O; Heyn H
    Nat Biotechnol; 2020 Jun; 38(6):747-755. PubMed ID: 32518403
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Active Learning Method Based on Variational Autoencoder and DBSCAN Clustering.
    Chen F; Zhang T; Liu R
    Comput Intell Neurosci; 2021; 2021():9952596. PubMed ID: 34381500
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Machine learning algorithm for feature space clustering of mixed data with missing information based on molecule similarity.
    Balaji K
    J Biomed Inform; 2022 Jan; 125():103954. PubMed ID: 34793972
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deep learning embedder method and tool for mass spectra similarity search.
    Qin C; Luo X; Deng C; Shu K; Zhu W; Griss J; Hermjakob H; Bai M; Perez-Riverol Y
    J Proteomics; 2021 Feb; 232():104070. PubMed ID: 33307250
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mapping RNA-seq reads to transcriptomes efficiently based on learning to hash method.
    Yu X; Liu X
    Comput Biol Med; 2020 Jan; 116():103539. PubMed ID: 31765913
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Subtype identification from heterogeneous TCGA datasets on a genomic scale by multi-view clustering with enhanced consensus.
    Cai M; Li L
    BMC Med Genomics; 2017 Dec; 10(Suppl 4):75. PubMed ID: 29322925
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Large-scale integration of heterogeneous pharmacogenomic data for identifying drug mechanism of action.
    Luo Y; Wang S; Xiao J; Peng J
    Pac Symp Biocomput; 2018; 23():44-55. PubMed ID: 29218868
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning.
    Deng Y; Bao F; Dai Q; Wu LF; Altschuler SJ
    Nat Methods; 2019 Apr; 16(4):311-314. PubMed ID: 30886411
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors.
    Haghverdi L; Lun ATL; Morgan MD; Marioni JC
    Nat Biotechnol; 2018 Jun; 36(5):421-427. PubMed ID: 29608177
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prediction of drug-target interaction by integrating diverse heterogeneous information source with multiple kernel learning and clustering methods.
    Yan XY; Zhang SW; He CR
    Comput Biol Chem; 2019 Feb; 78():460-467. PubMed ID: 30528728
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CHICKN: extraction of peptide chromatographic elution profiles from large scale mass spectrometry data by means of Wasserstein compressive hierarchical cluster analysis.
    Permiakova O; Guibert R; Kraut A; Fortin T; Hesse AM; Burger T
    BMC Bioinformatics; 2021 Feb; 22(1):68. PubMed ID: 33579189
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluating cluster preservation in frequent itemset integration for distributed databases.
    Dua S; Dessauer MP; Sethi P
    J Med Syst; 2011 Oct; 35(5):845-53. PubMed ID: 20703684
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ScCAEs: deep clustering of single-cell RNA-seq via convolutional autoencoder embedding and soft K-means.
    Hu H; Li Z; Li X; Yu M; Pan X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34472585
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.