BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35947988)

  • 1. Comparison of 126 MeV antiproton and proton-a FLUKA-based microdosimetric approach.
    Chattaraj A; Selvam TP
    Phys Med Biol; 2022 Sep; 67(18):. PubMed ID: 35947988
    [No Abstract]   [Full Text] [Related]  

  • 2. Calculation of biological effectiveness of SOBP proton beams: a TOPAS Monte Carlo study.
    Chattaraj A; Selvam TP
    Biomed Phys Eng Express; 2024 Mar; 10(3):. PubMed ID: 38377599
    [No Abstract]   [Full Text] [Related]  

  • 3. Microdosimetry-based investigation of biological effectiveness of
    Chattaraj A; Selvam TP
    Phys Med Biol; 2023 Nov; 68(22):. PubMed ID: 37797652
    [No Abstract]   [Full Text] [Related]  

  • 4. An antiproton simulation study using MCNPX for radiation therapy.
    Michael Handley S; Ahmad S
    J Xray Sci Technol; 2011; 19(3):345-53. PubMed ID: 21876284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulations of therapeutic proton beams for relative biological effectiveness of double-strand break.
    Wang CC; Hsiao Y; Lee CC; Chao TC; Wang CC; Tung CJ
    Int J Radiat Biol; 2012 Jan; 88(1-2):158-63. PubMed ID: 21823821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating microdosimetric
    Cartechini G; Missiaggia M; Scifoni E; La Tessa C; Cordoni FG
    Phys Med Biol; 2024 Feb; 69(4):. PubMed ID: 38211313
    [No Abstract]   [Full Text] [Related]  

  • 7. Calculation of relative biological effectiveness for proton beams using biological weighting functions.
    Paganetti H; Olko P; Kobus H; Becker R; Schmitz T; Waligorski MP; Filges D; Müller-Gärtner HW
    Int J Radiat Oncol Biol Phys; 1997 Feb; 37(3):719-29. PubMed ID: 9112472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microdosimetric calculation of relative biological effectiveness for design of therapeutic proton beams.
    Kase Y; Yamashita W; Matsufuji N; Takada K; Sakae T; Furusawa Y; Yamashita H; Murayama S
    J Radiat Res; 2013 May; 54(3):485-93. PubMed ID: 23179376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antiproton radiotherapy.
    Bassler N; Alsner J; Beyer G; DeMarco JJ; Doser M; Hajdukovic D; Hartley O; Iwamoto KS; Jäkel O; Knudsen HV; Kovacevic S; Møller SP; Overgaard J; Petersen JB; Solberg TD; Sørensen BS; Vranjes S; Wouters BG; Holzscheiter MH
    Radiother Oncol; 2008 Jan; 86(1):14-9. PubMed ID: 18158194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diamond based integrated detection system for dosimetric and microdosimetric characterization of radiotherapy ion beams.
    Verona C; Barna S; Georg D; Hamad Y; Magrin G; Marinelli M; Meouchi C; Verona Rinati G
    Med Phys; 2024 Jan; 51(1):533-544. PubMed ID: 37656015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microdosimetry-based relative biological effectiveness calculations for radiotherapeutic electron beams: a FLUKA-based study.
    Chattaraj A; Selvam TP
    Radiol Phys Technol; 2021 Sep; 14(3):297-308. PubMed ID: 34216005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculated LET spectrum from antiproton beams stopping in water.
    Bassler N; Holzscheiter M
    Acta Oncol; 2009; 48(2):223-6. PubMed ID: 18932095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of penh, fluka, and Geant4/topas for absorbed dose calculations in air cavities representing ionization chambers in high-energy photon and proton beams.
    Baumann KS; Horst F; Zink K; Gomà C
    Med Phys; 2019 Oct; 46(10):4639-4653. PubMed ID: 31350915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spread-out antiproton beams deliver poor physical dose distributions for radiation therapy.
    Paganetti H; Goitein M; Parodi K
    Radiother Oncol; 2010 Apr; 95(1):79-86. PubMed ID: 19394098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdosimetric measurements of a monoenergetic and modulated Bragg Peaks of 62 MeV therapeutic proton beam with a synthetic single crystal diamond microdosimeter.
    Verona C; Cirrone GAP; Magrin G; Marinelli M; Palomba S; Petringa G; Rinati GV
    Med Phys; 2020 Nov; 47(11):5791-5801. PubMed ID: 32974938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of a mini-TEPC to radiation quality variations in clinical proton beams.
    Selva A; Bianchi A; Cirrone GAP; Petringa G; Romano F; Schettino G; Conte V
    Phys Med; 2024 Feb; 118():103201. PubMed ID: 38199179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using the Proton Energy Spectrum and Microdosimetry to Model Proton Relative Biological Effectiveness.
    Newpower M; Patel D; Bronk L; Guan F; Chaudhary P; McMahon SJ; Prise KM; Schettino G; Grosshans DR; Mohan R
    Int J Radiat Oncol Biol Phys; 2019 Jun; 104(2):316-324. PubMed ID: 30731186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relative biological effectiveness of antiprotons.
    Holzscheiter MH; Alsner J; Bassler N; Boll R; Caccia M; Knudsen H; Maggiore C; Petersen JB; Sellner S; Straße T; Singers Sørensen B; Overgaard J
    Radiother Oncol; 2016 Dec; 121(3):453-458. PubMed ID: 27988058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations of ³He ion physical characteristics in a water phantom and evaluation of radiobiological effectiveness.
    Taleei R; Guan F; Peeler C; Bronk L; Patel D; Mirkovic D; Grosshans DR; Mohan R; Titt U
    Med Phys; 2016 Feb; 43(2):761-76. PubMed ID: 26843239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variable RBE in proton therapy: comparison of different model predictions and their influence on clinical-like scenarios.
    Giovannini G; Böhlen T; Cabal G; Bauer J; Tessonnier T; Frey K; Debus J; Mairani A; Parodi K
    Radiat Oncol; 2016 May; 11():68. PubMed ID: 27185038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.