These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 35948069)
1. Isolating Contiguous Fe Atoms by Forming a Co-Fe Intermetallic Catalyst from Spent Lithium-Ion Batteries to Regulate Activity for Zinc-Air Batteries. Jiao M; Zhang Q; Ye C; Gao R; Dai L; Zhou G; Cheng HM ACS Nano; 2022 Aug; 16(8):13223-13231. PubMed ID: 35948069 [TBL] [Abstract][Full Text] [Related]
2. Recycling cobalt from spent lithium-ion batteries for designing the novel cobalt nitride followers: Towards efficient overall water splitting and advanced zinc-air batteries. Wang Z; Li M; Fu B; Cao W; Bo X J Colloid Interface Sci; 2024 May; 662():218-230. PubMed ID: 38350345 [TBL] [Abstract][Full Text] [Related]
3. FeCo Nanoparticles Encapsulated in N-Doped Carbon Nanotubes Coupled with Layered Double (Co, Fe) Hydroxide as an Efficient Bifunctional Catalyst for Rechargeable Zinc-Air Batteries. Zhang T; Bian J; Zhu Y; Sun C Small; 2021 Nov; 17(44):e2103737. PubMed ID: 34553487 [TBL] [Abstract][Full Text] [Related]
4. Simply prepared electrocatalyst of CoFe alloy and nitrogen-doped carbon with multi-dimensional structure and high performance for rechargeable zinc-air battery. He Y; Xi Z; Xu C Nanotechnology; 2022 Sep; 33(47):. PubMed ID: 35914475 [TBL] [Abstract][Full Text] [Related]
5. Recycling spent LiNi Jiao M; Zhang Q; Ye C; Liu Z; Zhong X; Wang J; Li C; Dai L; Zhou G; Cheng HM Proc Natl Acad Sci U S A; 2022 May; 119(20):e2202202119. PubMed ID: 35533280 [TBL] [Abstract][Full Text] [Related]
6. Iron Single Atoms-Assisted Cobalt Nitride Nanoparticles to Strengthen the Cycle Life of Rechargeable Zn-Air Battery. Zhang X; Yu P; Xing G; Xie Y; Zhang X; Zhang G; Sun F; Wang L Small; 2022 Dec; 18(51):e2205228. PubMed ID: 36328702 [TBL] [Abstract][Full Text] [Related]
7. Electron Spin Broken-Symmetry of Fe-Co Diatomic Pairs to Promote Kinetics of Bifunctional Oxygen Electrocatalysis for Zinc-Air Batteries. Li X; Qin J; Lin Q; Yi X; Yan C; Zhang J; Dong J; Yu K; Zhang S; Xie C; Yang H; Xiao W; Li W; Wang J; Li X Adv Sci (Weinh); 2024 Sep; 11(35):e2401187. PubMed ID: 38877642 [TBL] [Abstract][Full Text] [Related]
8. In situ integration of CoFe alloy nanoparticles with nitrogen-doped carbon nanotubes as advanced bifunctional cathode catalysts for Zn-air batteries. Cai P; Hong Y; Ci S; Wen Z Nanoscale; 2016 Dec; 8(48):20048-20055. PubMed ID: 27883155 [TBL] [Abstract][Full Text] [Related]
9. Molecular Bridging Enables Isolated Iron Atoms on Stereoassembled Carbon Framework To Boost Oxygen Reduction for Zinc-Air Batteries. Wang W; Rui K; Wu K; Wang Y; Ke L; Wang X; Xu F; Lu Y; Zhu J Chemistry; 2022 Jul; 28(40):e202200789. PubMed ID: 35522478 [TBL] [Abstract][Full Text] [Related]
11. Coordinated Co-NC/CoFe dual active centre embedded three-dimensional ordered macroporous framework as bifunctional catalyst for efficient and stable zinc-air batteries. Wan T; Yang C; Zhao X; Han Q; Zhang Z; Li J; Du X; Sun D Nanotechnology; 2022 Jan; 33(15):. PubMed ID: 34952529 [TBL] [Abstract][Full Text] [Related]
12. Three-Dimensional Fe Single-Atom Catalyst for High-Performance Cathode of Zn-Air Batteries. Jiao Y; Gu X; Zhai P; Wei Y; Liu W; Chen Q; Yang Z; Zuo J; Wang L; Xu T; Gong Y Nano Lett; 2022 Sep; 22(18):7386-7393. PubMed ID: 36121181 [TBL] [Abstract][Full Text] [Related]
13. Doping-engineered bifunctional oxygen electrocatalyst with Se/Fe-doped Co Zhao H; Yao H; Wang S; Cao Y; Lu Z; Xie J; Hu J; Hao A J Colloid Interface Sci; 2022 Nov; 626():475-485. PubMed ID: 35803146 [TBL] [Abstract][Full Text] [Related]
14. Anchoring Fe-N-C Sites on Hierarchically Porous Carbon Sphere and CNT Interpenetrated Nanostructures as Efficient Cathodes for Zinc-Air Batteries. Fan F; Zhou H; Yan R; Yang C; Zhu H; Gao Y; Ma L; Cao S; Cheng C; Wang Y ACS Appl Mater Interfaces; 2021 Sep; 13(35):41609-41618. PubMed ID: 34428013 [TBL] [Abstract][Full Text] [Related]
15. Sulfion oxidation assisting self-powered hydrogen production system based on efficient catalysts from spent lithium-ion batteries. Wang B; Xiao X; Li J; Zhang M; Jiao M; Zheng Z; Li T; Zhang Q; Zhang X; Zhou G Proc Natl Acad Sci U S A; 2023 Dec; 120(52):e2317174120. PubMed ID: 38127984 [TBL] [Abstract][Full Text] [Related]
16. A General "In Situ Etch-Adsorption-Phosphatization" Strategy for the Fabrication of Metal Phosphides/Hollow Carbon Composite for High Performance Liquid/Flexible Zn-Air Batteries. Yang X; Wang F; Jing Z; Chen M; Wang B; Wang L; Qu G; Kong Y; Xu L Small; 2023 Sep; 19(38):e2301985. PubMed ID: 37226367 [TBL] [Abstract][Full Text] [Related]
17. Mn Single-Atom Tuning Fe-N-C Catalyst Enables Highly Efficient and Durable Oxygen Electrocatalysis and Zinc-Air Batteries. Ran L; Xu Y; Zhu X; Chen S; Qiu X ACS Nano; 2024 Jan; 18(1):750-760. PubMed ID: 38150590 [TBL] [Abstract][Full Text] [Related]
18. Boosting the activity and stability Deng X; Gu X; Deng Y; Jiang Z; Chen W; Dang D; Lin W; Chi B Nanoscale; 2022 Sep; 14(36):13192-13203. PubMed ID: 36047468 [TBL] [Abstract][Full Text] [Related]
19. Fe-Cluster Pushing Electrons to N-Doped Graphitic Layers with Fe Yang J; Hu J; Weng M; Tan R; Tian L; Yang J; Amine J; Zheng J; Chen H; Pan F ACS Appl Mater Interfaces; 2017 Feb; 9(5):4587-4596. PubMed ID: 28098443 [TBL] [Abstract][Full Text] [Related]
20. Co, Fe codoped holey carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Zhang X; Zhu Z; Tan Y; Qin K; Ma FX; Zhang J Chem Commun (Camb); 2021 Feb; 57(16):2049-2052. PubMed ID: 33507178 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]