These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35948102)

  • 21. The effects of long-term freezing-thawing on the strength properties and the chemical stability of compound solidified/stabilized lead-contaminated soil.
    Yang Z; Zhang K; Li X; Ren S; Li P
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):38185-38201. PubMed ID: 36576635
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immobilization potential of Cr(VI) in sodium hydroxide activated slag pastes.
    Zhang M; Yang C; Zhao M; Yang K; Shen R; Zheng Y
    J Hazard Mater; 2017 Jan; 321():281-289. PubMed ID: 27637094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Process envelopes for stabilisation/solidification of contaminated soil using lime-slag blend.
    Kogbara RB; Yi Y; Al-Tabbaa A
    Environ Sci Pollut Res Int; 2011 Sep; 18(8):1286-96. PubMed ID: 21409547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of strength and leaching characteristics of heavy metal-contaminated soils solidified/stabilized by cement/fly ash.
    Zha F; Ji C; Xu L; Kang B; Yang C; Chu C
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):30206-30219. PubMed ID: 31422534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles.
    Wang T; Qian T; Huo L; Li Y; Zhao D
    Environ Pollut; 2019 Dec; 255(Pt 1):112992. PubMed ID: 31541830
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials.
    Huang X; Zhuang R; Muhammad F; Yu L; Shiau Y; Li D
    Chemosphere; 2017 Feb; 168():300-308. PubMed ID: 27810528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing long-term performance of stabilized Zn-contaminated dredged sediment slurry treated with the PHDVPSS method.
    Mastoi AK; Bhanbhro R; Chen X; Fatah TA; Mehroz A
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19262-19272. PubMed ID: 34714480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmentally available hexavalent chromium in soils and sediments impacted by dispersed fly ash in Sarigkiol basin (Northern Greece).
    Kazakis N; Kantiranis N; Kalaitzidou K; Kaprara E; Mitrakas M; Frei R; Vargemezis G; Vogiatzis D; Zouboulis A; Filippidis A
    Environ Pollut; 2018 Apr; 235():632-641. PubMed ID: 29331896
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leaching of elements from cement activated fly ash and slag amended soils.
    Mahedi M; Cetin B
    Chemosphere; 2019 Nov; 235():565-574. PubMed ID: 31276869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic leaching behavior of geogenic As in soils after cement-based stabilization/solidification.
    Li JS; Wang L; Tsang DCW; Beiyuan J; Poon CS
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):27822-27832. PubMed ID: 28986736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sustainable stabilization/solidification of arsenic-containing soil by blast slag and cement blends.
    Li JS; Chen L; Zhan B; Wang L; Poon CS; Tsang DCW
    Chemosphere; 2021 May; 271():129868. PubMed ID: 33736205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient remediation of heavily As(III)-contaminated soil using a pre-oxidation and stabilization/solidification technique.
    Zhang W; Jiang M
    Chemosphere; 2022 Nov; 306():135598. PubMed ID: 35809746
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Review on stabilization/solidification methods and mechanism of heavy metals based on OPC-based binders.
    Chen L; Nakamura K; Hama T
    J Environ Manage; 2023 Apr; 332():117362. PubMed ID: 36716545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New ternary blend limestone calcined clay cement for solidification/stabilization of zinc contaminated soil.
    Reddy VA; Solanki CH; Kumar S; Reddy KR; Du YJ
    Chemosphere; 2019 Nov; 235():308-315. PubMed ID: 31260871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characteristics, kinetics, thermodynamics and long-term effects of zerovalent iron/pyrite in remediation of Cr(VI)-contaminated soil.
    Min X; Li Q; Zhang X; Liu L; Xie Y; Guo L; Liao Q; Yang Z; Yang W
    Environ Pollut; 2021 Nov; 289():117830. PubMed ID: 34325095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Remediation of hexavalent chromium in contaminated soil using amorphous iron pyrite: Effect on leachability, bioaccessibility, phytotoxicity and long-term stability.
    Li Y; Tian X; Liang J; Chen X; Ye J; Liu Y; Liu Y; Wei Y
    Environ Pollut; 2020 Sep; 264():114804. PubMed ID: 32559864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microwave-enhanced reductive immobilization of high concentrations of chromium in a field soil using iron polysulfide.
    Wang J; Liu X; Zhu Z; Yuan L; Zhao D; Deng H; Lin Z
    J Hazard Mater; 2021 Sep; 418():126293. PubMed ID: 34118547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sustainable and efficient stabilization/solidification of Pb, Cr, and Cd in lead-zinc tailings by using highly reactive pozzolanic solid waste.
    Wang H; Ju C; Zhou M; Chen J; Dong Y; Hou H
    J Environ Manage; 2022 Mar; 306():114473. PubMed ID: 35026710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles.
    Li Y; Wang W; Zhou L; Liu Y; Mirza ZA; Lin X
    Chemosphere; 2017 Feb; 169():131-138. PubMed ID: 27870934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite.
    Lyu H; Zhao H; Tang J; Gong Y; Huang Y; Wu Q; Gao B
    Chemosphere; 2018 Mar; 194():360-369. PubMed ID: 29223115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.