These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 35948424)
1. GW Quasiparticle Energies and Bandgaps of Two-Dimensional Materials Immersed in Water. Kim SJ; Lebègue S; Ringe S; Kim H J Phys Chem Lett; 2022 Aug; 13(32):7574-7582. PubMed ID: 35948424 [TBL] [Abstract][Full Text] [Related]
2. Elucidating Solvatochromic Shifts in Two-Dimensional Photocatalysts by Solving the Bethe-Salpeter Equation Coupled with Implicit Solvation Method. Kim SJ; Lebègue S; Ringe S; Kim H J Phys Chem Lett; 2024 May; 15(17):4575-4580. PubMed ID: 38639559 [TBL] [Abstract][Full Text] [Related]
3. All-Electron BSE@ Yao Y; Golze D; Rinke P; Blum V; Kanai Y J Chem Theory Comput; 2022 Mar; 18(3):1569-1583. PubMed ID: 35138865 [TBL] [Abstract][Full Text] [Related]
4. Solvation effects on the band edge positions of photocatalysts from first principles. Ping Y; Sundararaman R; Goddard WA Phys Chem Chem Phys; 2015 Nov; 17(45):30499-509. PubMed ID: 26513300 [TBL] [Abstract][Full Text] [Related]
5. Correlation effects of π electrons on the band structures of conjugated polymers using the self-consistent GW approximation with vertex corrections. Chang YW; Jin BY J Chem Phys; 2012 Jan; 136(2):024110. PubMed ID: 22260567 [TBL] [Abstract][Full Text] [Related]
6. Approximating Quasiparticle and Excitation Energies from Ground State Generalized Kohn-Sham Calculations. Mei Y; Li C; Su NQ; Yang W J Phys Chem A; 2019 Jan; 123(3):666-673. PubMed ID: 30589546 [TBL] [Abstract][Full Text] [Related]
7. Low-Order Scaling Quasiparticle Self-Consistent GW for Molecules. Förster A; Visscher L Front Chem; 2021; 9():736591. PubMed ID: 34540804 [TBL] [Abstract][Full Text] [Related]
8. Excitation Energies from the Single-Particle Green's Function with the GW Approximation. Jin Y; Yang W J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830 [TBL] [Abstract][Full Text] [Related]
9. Structural and electronic properties of ZrX2)and HfX2 (X=S and Se) from first principles calculations. Jiang H J Chem Phys; 2011 May; 134(20):204705. PubMed ID: 21639465 [TBL] [Abstract][Full Text] [Related]
10. The Golze D; Dvorak M; Rinke P Front Chem; 2019; 7():377. PubMed ID: 31355177 [TBL] [Abstract][Full Text] [Related]
11. GW quasiparticle energies of atoms in strong magnetic fields. Holzer C; Teale AM; Hampe F; Stopkowicz S; Helgaker T; Klopper W J Chem Phys; 2019 Jun; 150(21):214112. PubMed ID: 31176321 [TBL] [Abstract][Full Text] [Related]
12. Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies. Bruneval F J Chem Phys; 2012 May; 136(19):194107. PubMed ID: 22612080 [TBL] [Abstract][Full Text] [Related]
13. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding. Katkova EV; Onufriev AV; Aguilar B; Sulimov VB J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081 [TBL] [Abstract][Full Text] [Related]
14. Assessment and prediction of band edge locations of nitrides using a self-consistent hybrid functional. Kim SJ; Lebègue S; Kim H; Kim WJ J Chem Phys; 2021 Jul; 155(2):024120. PubMed ID: 34266276 [TBL] [Abstract][Full Text] [Related]
15. Modeling loop reorganization free energies of acetylcholinesterase: a comparison of explicit and implicit solvent models. Olson MA Proteins; 2004 Dec; 57(4):645-50. PubMed ID: 15481087 [TBL] [Abstract][Full Text] [Related]
16. First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes. Toroker MC; Kanan DK; Alidoust N; Isseroff LY; Liao P; Carter EA Phys Chem Chem Phys; 2011 Oct; 13(37):16644-54. PubMed ID: 21853210 [TBL] [Abstract][Full Text] [Related]
17. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model. Shivakumar D; Deng Y; Roux B J Chem Theory Comput; 2009 Apr; 5(4):919-30. PubMed ID: 26609601 [TBL] [Abstract][Full Text] [Related]
18. Charge-transfer excited states in the donor/acceptor interface from large-scale GW calculations. Fujita T; Noguchi Y; Hoshi T J Chem Phys; 2019 Sep; 151(11):114109. PubMed ID: 31542033 [TBL] [Abstract][Full Text] [Related]
19. Benchmarking the GW Approximation and Bethe-Salpeter Equation for Groups IB and IIB Atoms and Monoxides. Hung L; Bruneval F; Baishya K; Öğüt S J Chem Theory Comput; 2017 May; 13(5):2135-2146. PubMed ID: 28387124 [TBL] [Abstract][Full Text] [Related]
20. Quasiparticle self-consistent GW method for the spectral properties of complex materials. Bruneval F; Gatti M Top Curr Chem; 2014; 347():99-135. PubMed ID: 24563009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]