These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35948500)

  • 21. Highly Emissive Blue Quantum Dots with Superior Thermal Stability via In Situ Surface Reconstruction of Mixed CsPbBr
    Kim H; Park JH; Kim K; Lee D; Song MH; Park J
    Adv Sci (Weinh); 2022 Feb; 9(5):e2104660. PubMed ID: 34957694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dimensional reduction of the small-bandgap double perovskite Cs
    Connor BA; Biega RI; Leppert L; Karunadasa HI
    Chem Sci; 2020 Aug; 11(29):7708-7715. PubMed ID: 32874527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct-indirect character of the bandgap in methylammonium lead iodide perovskite.
    Hutter EM; Gélvez-Rueda MC; Osherov A; Bulović V; Grozema FC; Stranks SD; Savenije TJ
    Nat Mater; 2017 Jan; 16(1):115-120. PubMed ID: 27698354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation.
    Abdi-Jalebi M; Andaji-Garmaroudi Z; Cacovich S; Stavrakas C; Philippe B; Richter JM; Alsari M; Booker EP; Hutter EM; Pearson AJ; Lilliu S; Savenije TJ; Rensmo H; Divitini G; Ducati C; Friend RH; Stranks SD
    Nature; 2018 Mar; 555(7697):497-501. PubMed ID: 29565365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bimetallic superalkali substitution in the CsPbBr
    Sikorska C; Gaston N
    J Chem Phys; 2021 Nov; 155(17):174307. PubMed ID: 34742223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct and indirect exciton transitions in two-dimensional lead halide perovskite semiconductors.
    Do TTH; Granados Del Águila A; Xing J; Liu S; Xiong Q
    J Chem Phys; 2020 Aug; 153(6):064705. PubMed ID: 35287445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single Halide Perovskite/Semiconductor Core/Shell Quantum Dots with Ultrastability and Nonblinking Properties.
    Tang X; Yang J; Li S; Liu Z; Hu Z; Hao J; Du J; Leng Y; Qin H; Lin X; Lin Y; Tian Y; Zhou M; Xiong Q
    Adv Sci (Weinh); 2019 Sep; 6(18):1900412. PubMed ID: 31559125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties.
    Jaffe A; Lin Y; Beavers CM; Voss J; Mao WL; Karunadasa HI
    ACS Cent Sci; 2016 Apr; 2(4):201-9. PubMed ID: 27163050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electronic and optical properties of bulk and surface of CsPbBr
    Ezzeldien M; Al-Qaisi S; Alrowaili ZA; Alzaid M; Maskar E; Es-Smairi A; Vu TV; Rai DP
    Sci Rep; 2021 Oct; 11(1):20622. PubMed ID: 34663843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.
    Dobrovolsky A; Merdasa A; Unger EL; Yartsev A; Scheblykin IG
    Nat Commun; 2017 Jun; 8(1):34. PubMed ID: 28652597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optoelectronic Properties of Low-Bandgap Halide Perovskites for Solar Cell Applications.
    Dey K; Roose B; Stranks SD
    Adv Mater; 2021 Oct; 33(40):e2102300. PubMed ID: 34432925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-temperature direct synthesis of perovskite nanocrystals in water and their application in light-emitting diodes.
    Zhang X; Gao L; Zhao M; Miao Y; Wang Z; Wang C; Liu P; Xu B; Guo J
    Nanoscale; 2020 Mar; 12(11):6522-6528. PubMed ID: 32159195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly Emissive Green Perovskite Nanocrystals in a Solid State Crystalline Matrix.
    Quan LN; Quintero-Bermudez R; Voznyy O; Walters G; Jain A; Fan JZ; Zheng X; Yang Z; Sargent EH
    Adv Mater; 2017 Jun; 29(21):. PubMed ID: 28370565
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct Bandgap Behavior in Rashba-Type Metal Halide Perovskites.
    Richter JM; Chen K; Sadhanala A; Butkus J; Rivett JPH; Friend RH; Monserrat B; Hodgkiss JM; Deschler F
    Adv Mater; 2018 Dec; 30(52):e1803379. PubMed ID: 30370614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrafast carrier dynamics in all-inorganic CsPbBr
    Liu X; Han J; Li Y; Cao B; Sun C; Yin H; Shi Y; Jin M; Liu C; Sun M; Ding D
    Opt Express; 2019 Aug; 27(16):A995-A1003. PubMed ID: 31510488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlation between Photoluminescence and Carrier Transport and a Simple In Situ Passivation Method for High-Bandgap Hybrid Perovskites.
    Stoddard RJ; Eickemeyer FT; Katahara JK; Hillhouse HW
    J Phys Chem Lett; 2017 Jul; 8(14):3289-3298. PubMed ID: 28636388
    [TBL] [Abstract][Full Text] [Related]  

  • 37. First-Principles Study on the Direct Bandgap Double Perovskite Series Cs
    Luo J; Yang A; Xie Z
    ACS Omega; 2021 Dec; 6(48):32408-32416. PubMed ID: 34901592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microsecond Carrier Lifetimes, Controlled p-Doping, and Enhanced Air Stability in Low-Bandgap Metal Halide Perovskites.
    Bowman AR; Klug MT; Doherty TAS; Farrar MD; Senanayak SP; Wenger B; Divitini G; Booker EP; Andaji-Garmaroudi Z; Macpherson S; Ruggeri E; Sirringhaus H; Snaith HJ; Stranks SD
    ACS Energy Lett; 2019 Sep; 4(9):2301-2307. PubMed ID: 31544151
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing Defect Tolerance with Ligands at the Surface of Lead Halide Perovskites.
    Smart TJ; Takenaka H; Pham TA; Tan LZ; Zhang JZ; Ogitsu T; Ping Y
    J Phys Chem Lett; 2021 Jul; 12(27):6299-6304. PubMed ID: 34227805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. First-principles study of lead-free Ge-based 2D Ruddlesden-Popper hybrid perovskites for solar cell applications.
    Babaei M; Ahmadi V; Darvish G
    Phys Chem Chem Phys; 2022 Sep; 24(35):21052-21060. PubMed ID: 36004762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.