BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 35948609)

  • 1. Evolutionary diversification of epidermal barrier genes in amphibians.
    Sachslehner AP; Eckhart L
    Sci Rep; 2022 Aug; 12(1):13634. PubMed ID: 35948609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Filaggrin has evolved from an "S100 fused-type protein" (SFTP) gene present in a common ancestor of amphibians and mammals.
    Mlitz V; Hussain T; Tschachler E; Eckhart L
    Exp Dermatol; 2017 Oct; 26(10):955-957. PubMed ID: 28191671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of epidermal differentiation genes of the tuatara provides insights into the early evolution of lepidosaurian skin.
    Holthaus KB; Alibardi L; Tschachler E; Eckhart L
    Sci Rep; 2020 Jul; 10(1):12844. PubMed ID: 32732894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary origin and diversification of epidermal barrier proteins in amniotes.
    Strasser B; Mlitz V; Hermann M; Rice RH; Eigenheer RA; Alibardi L; Tschachler E; Eckhart L
    Mol Biol Evol; 2014 Dec; 31(12):3194-205. PubMed ID: 25169930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogeny of caecilian amphibians (Gymnophiona) based on complete mitochondrial genomes and nuclear RAG1.
    San Mauro D; Gower DJ; Oommen OV; Wilkinson M; Zardoya R
    Mol Phylogenet Evol; 2004 Nov; 33(2):413-27. PubMed ID: 15336675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caecilian Genomes Reveal the Molecular Basis of Adaptation and Convergent Evolution of Limblessness in Snakes and Caecilians.
    Ovchinnikov V; Uliano-Silva M; Wilkinson M; Wood J; Smith M; Oliver K; Sims Y; Torrance J; Suh A; McCarthy SA; Durbin R; O'Connell MJ
    Mol Biol Evol; 2023 May; 40(5):. PubMed ID: 37194566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of DNA Methylation and Expression Pattern of S100 and Other Epidermal Differentiation Complex Genes in Differentiating Keratinocytes.
    Sobiak B; Graczyk-Jarzynka A; Leśniak W
    J Cell Biochem; 2016 May; 117(5):1092-8. PubMed ID: 26443750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of visual pigments in caecilians (Amphibia: Gymnophiona), an order of limbless vertebrates with rudimentary eyes.
    Mohun SM; Davies WL; Bowmaker JK; Pisani D; Himstedt W; Gower DJ; Hunt DM; Wilkinson M
    J Exp Biol; 2010 Oct; 213(Pt 20):3586-92. PubMed ID: 20889838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The vitellogenin genes in Cynops orientalis: New insights on the evolution of the vtg gene family in amphibians.
    Carducci F; Biscotti MA; Canapa A; Barucca M
    J Exp Zool B Mol Dev Evol; 2021 Nov; 336(7):554-561. PubMed ID: 34170078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development-Associated Genes of the Epidermal Differentiation Complex (EDC).
    Holthaus KB; Eckhart L
    J Dev Biol; 2024 Jan; 12(1):. PubMed ID: 38248869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review: Evolution and diversification of corneous beta-proteins, the characteristic epidermal proteins of reptiles and birds.
    Holthaus KB; Eckhart L; Dalla Valle L; Alibardi L
    J Exp Zool B Mol Dev Evol; 2018 Dec; 330(8):438-453. PubMed ID: 30637919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What lies beneath? Molecular evolution during the radiation of caecilian amphibians.
    Torres-Sánchez M; Gower DJ; Alvarez-Ponce D; Creevey CJ; Wilkinson M; San Mauro D
    BMC Genomics; 2019 May; 20(1):354. PubMed ID: 31072350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex Gene Loss and Duplication Events Have Facilitated the Evolution of Multiple Loricrin Genes in Diverse Bird Species.
    Davis AC; Greenwold MJ; Sawyer RH
    Genome Biol Evol; 2019 Mar; 11(3):984-1001. PubMed ID: 30863850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation to the land: The skin of reptiles in comparison to that of amphibians and endotherm amniotes.
    Alibardi L
    J Exp Zool B Mol Dev Evol; 2003 Aug; 298(1):12-41. PubMed ID: 12949767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mitogenomic perspective on the phylogeny and biogeography of living caecilians (Amphibia: Gymnophiona).
    Zhang P; Wake MH
    Mol Phylogenet Evol; 2009 Nov; 53(2):479-91. PubMed ID: 19577653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the origin of and phylogenetic relationships among living amphibians.
    Zardoya R; Meyer A
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7380-3. PubMed ID: 11390961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial evidence on the phylogenetic position of caecilians (Amphibia: Gymnophiona).
    Zardoya R; Meyer A
    Genetics; 2000 Jun; 155(2):765-75. PubMed ID: 10835397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene duplications and gene loss in the epidermal differentiation complex during the evolutionary land-to-water transition of cetaceans.
    Holthaus KB; Lachner J; Ebner B; Tschachler E; Eckhart L
    Sci Rep; 2021 Jun; 11(1):12334. PubMed ID: 34112911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-tissue transcriptomes of caecilian amphibians highlight incomplete knowledge of vertebrate gene families.
    Torres-Sánchez M; Creevey CJ; Kornobis E; Gower DJ; Wilkinson M; San Mauro D
    DNA Res; 2019 Feb; 26(1):13-20. PubMed ID: 30351380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of an Epidermal Differentiation Complex (EDC) Gene Family in Birds.
    Davis A; Greenwold MJ
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34069986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.