These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 35948614)
1. Absolute binding free energy calculations improve enrichment of actives in virtual compound screening. Feng M; Heinzelmann G; Gilson MK Sci Rep; 2022 Aug; 12(1):13640. PubMed ID: 35948614 [TBL] [Abstract][Full Text] [Related]
2. Statistical Analysis on the Performance of Molecular Mechanics Poisson-Boltzmann Surface Area versus Absolute Binding Free Energy Calculations: Bromodomains as a Case Study. Aldeghi M; Bodkin MJ; Knapp S; Biggin PC J Chem Inf Model; 2017 Sep; 57(9):2203-2221. PubMed ID: 28786670 [TBL] [Abstract][Full Text] [Related]
3. Enhanced ligand sampling for relative protein-ligand binding free energy calculations. Kaus JW; McCammon JA J Phys Chem B; 2015 May; 119(20):6190-7. PubMed ID: 25906170 [TBL] [Abstract][Full Text] [Related]
4. Ayaz M; Wadood A; Sadiq A; Ullah F; Anichkina O; Ghufran M J Biomol Struct Dyn; 2022; 40(20):10230-10238. PubMed ID: 34157942 [TBL] [Abstract][Full Text] [Related]
5. Extensive consensus docking evaluation for ligand pose prediction and virtual screening studies. Tuccinardi T; Poli G; Romboli V; Giordano A; Martinelli A J Chem Inf Model; 2014 Oct; 54(10):2980-6. PubMed ID: 25211541 [TBL] [Abstract][Full Text] [Related]
6. Rigorous Free Energy Simulations in Virtual Screening. Cournia Z; Allen BK; Beuming T; Pearlman DA; Radak BK; Sherman W J Chem Inf Model; 2020 Sep; 60(9):4153-4169. PubMed ID: 32539386 [TBL] [Abstract][Full Text] [Related]
7. Target specific proteochemometric model development for BACE1 - protein flexibility and structural water are critical in virtual screening. Manoharan P; Chennoju K; Ghoshal N Mol Biosyst; 2015 Jul; 11(7):1955-72. PubMed ID: 25927726 [TBL] [Abstract][Full Text] [Related]
12. Enhancing Hit Discovery in Virtual Screening through Absolute Protein-Ligand Binding Free-Energy Calculations. Chen W; Cui D; Jerome SV; Michino M; Lenselink EB; Huggins DJ; Beautrait A; Vendome J; Abel R; Friesner RA; Wang L J Chem Inf Model; 2023 May; 63(10):3171-3185. PubMed ID: 37167486 [TBL] [Abstract][Full Text] [Related]
13. Encompassing receptor flexibility in virtual screening using ensemble docking-based hybrid QSAR: discovery of novel phytochemicals for BACE1 inhibition. Chakraborty S; Ramachandran B; Basu S Mol Biosyst; 2014 Oct; 10(10):2684-92. PubMed ID: 25088750 [TBL] [Abstract][Full Text] [Related]
14. Improving molecular docking through eHiTS' tunable scoring function. Ravitz O; Zsoldos Z; Simon A J Comput Aided Mol Des; 2011 Nov; 25(11):1033-51. PubMed ID: 22076470 [TBL] [Abstract][Full Text] [Related]
15. Identification Mechanism of BACE1 on Inhibitors Probed by Using Multiple Separate Molecular Dynamics Simulations and Comparative Calculations of Binding Free Energies. Wang Y; Yang F; Yan D; Zeng Y; Wei B; Chen J; He W Molecules; 2023 Jun; 28(12):. PubMed ID: 37375328 [TBL] [Abstract][Full Text] [Related]
16. Identification of new BACE1 inhibitors using Pharmacophore and Molecular dynamics simulations approach. Dhanabalan AK; Kesherwani M; Velmurugan D; Gunasekaran K J Mol Graph Model; 2017 Sep; 76():56-69. PubMed ID: 28710924 [TBL] [Abstract][Full Text] [Related]
18. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment. Zhang X; Wong SE; Lightstone FC J Chem Inf Model; 2014 Jan; 54(1):324-37. PubMed ID: 24358939 [TBL] [Abstract][Full Text] [Related]