These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35948639)

  • 1. Antarctic calving loss rivals ice-shelf thinning.
    Greene CA; Gardner AS; Schlegel NJ; Fraser AD
    Nature; 2022 Sep; 609(7929):948-953. PubMed ID: 35948639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves.
    Liu Y; Moore JC; Cheng X; Gladstone RM; Bassis JN; Liu H; Wen J; Hui F
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3263-8. PubMed ID: 25733856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antarctic ice-sheet loss driven by basal melting of ice shelves.
    Pritchard HD; Ligtenberg SR; Fricker HA; Vaughan DG; van den Broeke MR; Padman L
    Nature; 2012 Apr; 484(7395):502-5. PubMed ID: 22538614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progressive unanchoring of Antarctic ice shelves since 1973.
    Miles BWJ; Bingham RG
    Nature; 2024 Feb; 626(8000):785-791. PubMed ID: 38383628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calving fluxes and basal melt rates of Antarctic ice shelves.
    Depoorter MA; Bamber JL; Griggs JA; Lenaerts JT; Ligtenberg SR; van den Broeke MR; Moholdt G
    Nature; 2013 Oct; 502(7469):89-92. PubMed ID: 24037377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets.
    Pritchard HD; Arthern RJ; Vaughan DG; Edwards LA
    Nature; 2009 Oct; 461(7266):971-5. PubMed ID: 19776741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ice-shelf retreat drives recent Pine Island Glacier speedup.
    Joughin I; Shapero D; Smith B; Dutrieux P; Barham M
    Sci Adv; 2021 Jun; 7(24):. PubMed ID: 34117064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vulnerability of Antarctica's ice shelves to meltwater-driven fracture.
    Lai CY; Kingslake J; Wearing MG; Chen PC; Gentine P; Li H; Spergel JJ; van Wessem JM
    Nature; 2020 Aug; 584(7822):574-578. PubMed ID: 32848224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inland thinning of West Antarctic Ice Sheet steered along subglacial rifts.
    Bingham RG; Ferraccioli F; King EC; Larter RD; Pritchard HD; Smith AM; Vaughan DG
    Nature; 2012 Jul; 487(7408):468-71. PubMed ID: 22837002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ice sheets. Volume loss from Antarctic ice shelves is accelerating.
    Paolo FS; Fricker HA; Padman L
    Science; 2015 Apr; 348(6232):327-31. PubMed ID: 25814064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves.
    Adusumilli S; Fricker HA; Medley B; Padman L; Siegfried MR
    Nat Geosci; 2020 Sep; 13(9):616-620. PubMed ID: 32952606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observed interannual changes beneath Filchner-Ronne Ice Shelf linked to large-scale atmospheric circulation.
    Hattermann T; Nicholls KW; Hellmer HH; Davis PED; Janout MA; Østerhus S; Schlosser E; Rohardt G; Kanzow T
    Nat Commun; 2021 May; 12(1):2961. PubMed ID: 34016971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical processes controlling the rifting of Larsen C Ice Shelf, Antarctica, prior to the calving of iceberg A68.
    Larour E; Rignot E; Poinelli M; Scheuchl B
    Proc Natl Acad Sci U S A; 2021 Oct; 118(40):. PubMed ID: 34580217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling West Antarctic ice sheet growth and collapse through the past five million years.
    Pollard D; DeConto RM
    Nature; 2009 Mar; 458(7236):329-32. PubMed ID: 19295608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice front retreat reconfigures meltwater-driven gyres modulating ocean heat delivery to an Antarctic ice shelf.
    Yoon ST; Lee WS; Nam S; Lee CK; Yun S; Heywood K; Boehme L; Zheng Y; Lee I; Choi Y; Jenkins A; Jin EK; Larter R; Wellner J; Dutrieux P; Bradley AT
    Nat Commun; 2022 Jan; 13(1):306. PubMed ID: 35027549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes.
    Smith B; Fricker HA; Gardner AS; Medley B; Nilsson J; Paolo FS; Holschuh N; Adusumilli S; Brunt K; Csatho B; Harbeck K; Markus T; Neumann T; Siegfried MR; Zwally HJ
    Science; 2020 Jun; 368(6496):1239-1242. PubMed ID: 32354841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in ice dynamics and mass balance of the Antarctic ice sheet.
    Rignot E
    Philos Trans A Math Phys Eng Sci; 2006 Jul; 364(1844):1637-55. PubMed ID: 16782604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Widespread movement of meltwater onto and across Antarctic ice shelves.
    Kingslake J; Ely JC; Das I; Bell RE
    Nature; 2017 Apr; 544(7650):349-352. PubMed ID: 28425995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell.
    Massom RA; Scambos TA; Bennetts LG; Reid P; Squire VA; Stammerjohn SE
    Nature; 2018 Jun; 558(7710):383-389. PubMed ID: 29899449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ocean heat drives rapid basal melt of the Totten Ice Shelf.
    Rintoul SR; Silvano A; Pena-Molino B; van Wijk E; Rosenberg M; Greenbaum JS; Blankenship DD
    Sci Adv; 2016 Dec; 2(12):e1601610. PubMed ID: 28028540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.