These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35949068)

  • 41. Influence of dissolved organic matter and activated carbon pore characteristics on organic micropollutant desorption.
    Aschermann G; Zietzschmann F; Jekel M
    Water Res; 2018 Apr; 133():123-131. PubMed ID: 29407694
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Agro-industrial residues as a unique support in a sand filter to enhance the bioactivity to remove microcystin-Leucine aRginine and organics.
    Kumar P; Rubio HDP; Hegde K; Brar SK; Cledon M; Kermanshahi-Pour A; Sauvé S; Roy-Lachapelle A; Galvez-Cloutier R
    Sci Total Environ; 2019 Jun; 670():971-981. PubMed ID: 31018439
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of ozonation and biologically enhanced activated carbon filtration on the composition of micropollutants in drinking water.
    Li WG; Qin W; Song Y; Zheng ZJ; Lv LY
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):33927-33935. PubMed ID: 30003486
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioaugmentation of pilot-scale slow sand filters can achieve compliant levels for the micropollutant metaldehyde in a real water matrix.
    Castro-Gutierrez VM; Pickering L; Cambronero-Heinrichs JC; Holden B; Haley J; Jarvis P; Jefferson B; Helgason T; Moir JW; Hassard F
    Water Res; 2022 Mar; 211():118071. PubMed ID: 35063927
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The relative roles of sorption and biodegradation in the removal of contaminants of emerging concern (CECs) in GAC-sand biofilters.
    Ma B; Arnold WA; Hozalski RM
    Water Res; 2018 Dec; 146():67-76. PubMed ID: 30236466
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sorption and biodegradation of organic micropollutants during river bank filtration: a laboratory column study.
    Bertelkamp C; Reungoat J; Cornelissen ER; Singhal N; Reynisson J; Cabo AJ; van der Hoek JP; Verliefde AR
    Water Res; 2014 Apr; 52():231-41. PubMed ID: 24275110
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Understanding the role of sorption and biodegradation in the removal of organic micropollutants by membrane aerated biofilm reactor (MABR) with different biofilm thickness.
    Sanchez-Huerta C; Medina JS; Wang C; Fortunato L; Hong PY
    Water Res; 2023 Jun; 236():119935. PubMed ID: 37030196
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mecoprop (MCPP) removal in full-scale rapid sand filters at a groundwater-based waterworks.
    Hedegaard MJ; Arvin E; Corfitzen CB; Albrechtsen HJ
    Sci Total Environ; 2014 Nov; 499():257-64. PubMed ID: 25194903
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Remediation of incomplete nitrification and capacity increase of biofilters at different drinking water treatment plants through copper dosing.
    Wagner FB; Nielsen PB; Boe-Hansen R; Albrechtsen HJ
    Water Res; 2018 Apr; 132():42-51. PubMed ID: 29306091
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Coupling pathway prediction and fluorescence spectroscopy to assess the impact of auxiliary substrates on micropollutant biodegradation.
    Schittich AR; Fenner K; Stedmon CA; Xu J; McKnight US; Smets BF
    Environ Microbiol; 2024 Feb; 26(2):e16560. PubMed ID: 38234207
    [TBL] [Abstract][Full Text] [Related]  

  • 51. From full-scale biofilters to bioreactors: Engineering biological metaldehyde removal.
    Rolph CA; Villa R; Jefferson B; Brookes A; Choya A; Iceton G; Hassard F
    Sci Total Environ; 2019 Oct; 685():410-418. PubMed ID: 31176226
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A predictive multi-linear regression model for organic micropollutants, based on a laboratory-scale column study simulating the river bank filtration process.
    Bertelkamp C; Verliefde AR; Reynisson J; Singhal N; Cabo AJ; de Jonge M; van der Hoek JP
    J Hazard Mater; 2016 Mar; 304():502-11. PubMed ID: 26619049
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Degradation of trace concentrations of the persistent groundwater pollutant 2,6-dichlorobenzamide (BAM) in bioaugmented rapid sand filters.
    Albers CN; Feld L; Ellegaard-Jensen L; Aamand J
    Water Res; 2015 Oct; 83():61-70. PubMed ID: 26125500
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions.
    Wunderlin P; Mohn J; Joss A; Emmenegger L; Siegrist H
    Water Res; 2012 Mar; 46(4):1027-37. PubMed ID: 22227243
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fate of alkylphenolic compounds during activated sludge treatment: impact of loading and organic composition.
    McAdam EJ; Bagnall JP; Soares A; Koh YK; Chiu TY; Scrimshaw MD; Lester JN; Cartmell E
    Environ Sci Technol; 2011 Jan; 45(1):248-54. PubMed ID: 21128606
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced removal of organic matter and typical disinfection byproduct precursors in combined iron-carbon micro electrolysis-UBAF process for drinking water pre-treatment.
    Chen Y; Lin T; Chen W
    J Environ Sci (China); 2019 Apr; 78():315-327. PubMed ID: 30665651
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Profiling microbial removal of micropollutants in sand filters: Biotransformation pathways and associated bacteria.
    Zhou J; Wang D; Ju F; Hu W; Liang J; Bai Y; Liu H; Qu J
    J Hazard Mater; 2022 Feb; 423(Pt B):127167. PubMed ID: 34536843
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Performance of biological activated carbon (BAC) filtration for the treatment of secondary effluent: A pilot-scale study.
    Ribeiro Dos Santos P; de Souza Leite L; Daniel LA
    J Environ Manage; 2022 Jan; 302(Pt A):114026. PubMed ID: 34731715
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exploring long-term retention and reactivation of micropollutant biodegradation capacity.
    Branco RHR; Meulepas RJW; Rijnaarts HHM; Sutton NB
    Environ Sci Pollut Res Int; 2024 Jul; ():. PubMed ID: 38985427
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of high rate nitrifying trickling filters for potable water treatment.
    van den Akker B; Holmes M; Cromar N; Fallowfield H
    Water Res; 2008 Nov; 42(17):4514-24. PubMed ID: 18752823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.