These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 35949094)
1. Isolation and screening of indigenous microalgae species for domestic and livestock wastewater treatment, biodiesel production, and carbon sequestration. Lee JC; Joo JH; Chun BH; Moon K; Song SH; Kim YJ; Lee SM; Lee AH J Environ Manage; 2022 Sep; 318():115648. PubMed ID: 35949094 [TBL] [Abstract][Full Text] [Related]
2. Biodiesel production and simultaneous treatment of domestic and livestock wastewater using indigenous microalgae, Chlorella sorokiniana JD1-1. Lee JC; Moon K; Lee N; Ryu S; Song SH; Kim YJ; Lee SM; Kim HW; Joo JH Sci Rep; 2023 Sep; 13(1):15190. PubMed ID: 37709845 [TBL] [Abstract][Full Text] [Related]
3. Microalgae as promising source for integrated wastewater treatment and biodiesel production. Fal S; Benhima R; El Mernissi N; Kasmi Y; Smouni A; El Arroussi H Int J Phytoremediation; 2022; 24(1):34-46. PubMed ID: 34000939 [TBL] [Abstract][Full Text] [Related]
4. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production. Yadav G; Dash SK; Sen R Sci Total Environ; 2019 Oct; 688():129-135. PubMed ID: 31229810 [TBL] [Abstract][Full Text] [Related]
5. Combination of non-sterilized wastewater purification and high-level CO Qin Y; Wang XW; Lian J; Zhao QF; Jiang HB Sci Total Environ; 2023 May; 873():162442. PubMed ID: 36842589 [TBL] [Abstract][Full Text] [Related]
6. Axenic green microalgae for the treatment of textile effluent and the production of biofuel: a promising sustainable approach. Pandey A; Kant G; Chaudhary A; Amesho KTT; Reddy K; Bux F World J Microbiol Biotechnol; 2024 Jan; 40(3):81. PubMed ID: 38285224 [TBL] [Abstract][Full Text] [Related]
7. Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: An updated review. Li S; Li X; Ho SH Chemosphere; 2022 Mar; 291(Pt 1):132863. PubMed ID: 34774903 [TBL] [Abstract][Full Text] [Related]
8. Efficient PAHs removal and CO Daniela Rios Ramirez K; Botero Ñañez K; Leonardo Gonzalez Gomez C; Thiago Andrade Moreira Í Environ Res; 2024 Nov; 261():119672. PubMed ID: 39053760 [TBL] [Abstract][Full Text] [Related]
9. Chlorella vulgaris cultivation in pilot-scale to treat real swine wastewater and mitigate carbon dioxide for sustainable biodiesel production by direct enzymatic transesterification. Xie D; Ji X; Zhou Y; Dai J; He Y; Sun H; Guo Z; Yang Y; Zheng X; Chen B Bioresour Technol; 2022 Apr; 349():126886. PubMed ID: 35217166 [TBL] [Abstract][Full Text] [Related]
10. Screening of the heterotrophic microalgae strain for the reclamation of acid producing wastewater. Su K; Li X; Lu T; Mou Y; Liu N; Song M; Yu Z Chemosphere; 2022 Nov; 307(Pt 3):136047. PubMed ID: 35977579 [TBL] [Abstract][Full Text] [Related]
11. An integrated semi-continuous culture to treat original swine wastewater and fix carbon dioxide by an indigenous Chlorella vulgaris MBFJNU-1 in an outdoor photobioreactor. Zheng M; Dai J; Ji X; Li D; He Y; Wang M; Huang J; Chen B Bioresour Technol; 2021 Nov; 340():125703. PubMed ID: 34371337 [TBL] [Abstract][Full Text] [Related]
12. A novel flat-panel photobioreactor for simultaneous production of lutein and carbon sequestration by Chlorella sorokiniana TH01. Van T Do C; Dinh CT; Dang MT; Dang Tran T; Giang Le T Bioresour Technol; 2022 Feb; 345():126552. PubMed ID: 34906709 [TBL] [Abstract][Full Text] [Related]
13. Coupling wastewater valorization with sustainable biofuel production: Comparison of lab- and pilot-scale biomass yields of Chlorella sorokiniana grown in wastewater under photoautotrophic and mixotrophic conditions. Qurat-Ul-Ain ; Javid A; Ali S; Hasan A; Senthilkumar N; Ranjitha J; Hussain A Chemosphere; 2022 Aug; 301():134703. PubMed ID: 35483657 [TBL] [Abstract][Full Text] [Related]
14. Biological fixation of carbon dioxide and biodiesel production using microalgae isolated from sewage waste water. Maheshwari N; Krishna PK; Thakur IS; Srivastava S Environ Sci Pollut Res Int; 2020 Aug; 27(22):27319-27329. PubMed ID: 31317429 [TBL] [Abstract][Full Text] [Related]
15. An approach for dairy wastewater remediation using mixture of microalgae and biodiesel production for sustainable transportation. Chandra R; Pradhan S; Patel A; Ghosh UK J Environ Manage; 2021 Nov; 297():113210. PubMed ID: 34375226 [TBL] [Abstract][Full Text] [Related]
16. Three stage cultivation process of facultative strain of Chlorella sorokiniana for treating dairy farm effluent and lipid enhancement. Hena S; Fatihah N; Tabassum S; Ismail N Water Res; 2015 Sep; 80():346-56. PubMed ID: 26043271 [TBL] [Abstract][Full Text] [Related]
17. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Chen CY; Kuo EW; Nagarajan D; Ho SH; Dong CD; Lee DJ; Chang JS Bioresour Technol; 2020 Apr; 302():122814. PubMed ID: 32004812 [TBL] [Abstract][Full Text] [Related]
18. Optimal Temperature and Light Intensity for Improved Mixotrophic Metabolism of Lee TH; Jang JK; Kim HW J Microbiol Biotechnol; 2017 Nov; 27(11):2010-2018. PubMed ID: 28870010 [TBL] [Abstract][Full Text] [Related]
19. Capability of different microalgae species for phytoremediation processes: wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Arbib Z; Ruiz J; Álvarez-Díaz P; Garrido-Pérez C; Perales JA Water Res; 2014 Feb; 49():465-74. PubMed ID: 24268718 [TBL] [Abstract][Full Text] [Related]