BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 35949146)

  • 1. Single pot organic solvent-free thermocycling technology for siRNA-ionizable LNPs: a proof-of-concept approach for alternative to microfluidics.
    De A; Ko YT
    Drug Deliv; 2022 Dec; 29(1):2644-2657. PubMed ID: 35949146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A tale of nucleic acid-ionizable lipid nanoparticles: Design and manufacturing technology and advancement.
    De A; Ko YT
    Expert Opin Drug Deliv; 2023 Jan; 20(1):75-91. PubMed ID: 36445261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why mRNA-ionizable LNPs formulations are so short-lived: causes and way-out.
    De A; Ko YT
    Expert Opin Drug Deliv; 2023 Feb; 20(2):175-187. PubMed ID: 36588456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formulating and Characterizing Lipid Nanoparticles for Gene Delivery using a Microfluidic Mixing Platform.
    Bailey-Hytholt CM; Ghosh P; Dugas J; Zarraga IE; Bandekar A
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a Microfluidic-Based Post-Treatment Process for Size-Controlled Lipid Nanoparticles and Application to siRNA Delivery.
    Kimura N; Maeki M; Sato Y; Ishida A; Tani H; Harashima H; Tokeshi M
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34011-34020. PubMed ID: 32667806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flash nanoprecipitation assisted self-assembly of ionizable lipid nanoparticles for nucleic acid delivery.
    Misra B; Hughes KA; Pentz WH; Samart P; Geldenhuys WJ; Bobbala S
    Nanoscale; 2024 Apr; 16(14):6939-6948. PubMed ID: 38511623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Lipid Nanoparticles Containing Ionizable Cationic Lipids Using Design-of-Experiments Approach.
    Terada T; Kulkarni JA; Huynh A; Chen S; van der Meel R; Tam YYC; Cullis PR
    Langmuir; 2021 Jan; 37(3):1120-1128. PubMed ID: 33439022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations into mRNA Lipid Nanoparticles Shelf-Life Stability under Nonfrozen Conditions.
    Reinhart AG; Osterwald A; Ringler P; Leiser Y; Lauer ME; Martin RE; Ullmer C; Schumacher F; Korn C; Keller M
    Mol Pharm; 2023 Dec; 20(12):6492-6503. PubMed ID: 37975733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of non-ionizable lipids and phase mixing methods on structural properties of lipid nanoparticle formulations.
    Pratsinis A; Fan Y; Portmann M; Hammel M; Kou P; Sarode A; Ringler P; Kovacik L; Lauer ME; Lamerz J; Hura GL; Yen CW; Keller M
    Int J Pharm; 2023 Apr; 637():122874. PubMed ID: 36948476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular-Level Structural Analysis of siRNA-Loaded Lipid Nanoparticles by
    Ueda K; Sakagawa Y; Saito T; Fujimoto T; Nakamura M; Sakuma F; Kaneko S; Tokumoto T; Nishimura K; Takeda J; Arai Y; Yamamoto K; Ikeda Y; Higashi K; Moribe K
    Mol Pharm; 2023 Sep; 20(9):4729-4742. PubMed ID: 37606988
    [No Abstract]   [Full Text] [Related]  

  • 11. On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA.
    Kulkarni JA; Darjuan MM; Mercer JE; Chen S; van der Meel R; Thewalt JL; Tam YYC; Cullis PR
    ACS Nano; 2018 May; 12(5):4787-4795. PubMed ID: 29614232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-step microfluidic synthesis of transferrin-conjugated lipid nanoparticles for siRNA delivery.
    Li Y; Lee RJ; Huang X; Li Y; Lv B; Wang T; Qi Y; Hao F; Lu J; Meng Q; Teng L; Zhou Y; Xie J; Teng L
    Nanomedicine; 2017 Feb; 13(2):371-381. PubMed ID: 27720989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic assembly of lipid-based oligonucleotide nanoparticles.
    Yu B; Zhu J; Xue W; Wu Y; Huang X; Lee LJ; Lee RJ
    Anticancer Res; 2011 Mar; 31(3):771-6. PubMed ID: 21498694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Polymer-Lipid Nanoparticles by Microfluidic Focusing for siRNA Delivery.
    Li Y; Huang X; Lee RJ; Qi Y; Wang K; Hao F; Zhang Y; Lu J; Meng Q; Li S; Xie J; Teng L
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27763492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemistry of Lipid Nanoparticles for RNA Delivery.
    Eygeris Y; Gupta M; Kim J; Sahay G
    Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, activity and uptake mechanism of siRNA-lipid nanoparticles with an asymmetric ionizable lipid.
    Suzuki Y; Ishihara H
    Int J Pharm; 2016 Aug; 510(1):350-8. PubMed ID: 27374199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of Ostwald ripening in low molecular weight amino lipid nanoparticles for systemic delivery of siRNA therapeutics.
    Gindy ME; Feuston B; Glass A; Arrington L; Haas RM; Schariter J; Stirdivant SM
    Mol Pharm; 2014 Nov; 11(11):4143-53. PubMed ID: 25317715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles.
    Sato Y; Okabe N; Note Y; Hashiba K; Maeki M; Tokeshi M; Harashima H
    Acta Biomater; 2020 Jan; 102():341-350. PubMed ID: 31733331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionizable amino lipid interactions with POPC: implications for lipid nanoparticle function.
    Ramezanpour M; Schmidt ML; Bodnariuc I; Kulkarni JA; Leung SSW; Cullis PR; Thewalt JL; Tieleman DP
    Nanoscale; 2019 Aug; 11(30):14141-14146. PubMed ID: 31334542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic production of mRNA-loaded lipid nanoparticles for vaccine applications.
    Lopes C; Cristóvão J; Silvério V; Lino PR; Fonte P
    Expert Opin Drug Deliv; 2022 Oct; 19(10):1381-1395. PubMed ID: 36223174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.