BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 35949146)

  • 21. Effect of the nanoformulation of siRNA-lipid assemblies on their cellular uptake and immune stimulation.
    Kubota K; Onishi K; Sawaki K; Li T; Mitsuoka K; Sato T; Takeoka S
    Int J Nanomedicine; 2017; 12():5121-5133. PubMed ID: 28790820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Effect of Size and Charge of Lipid Nanoparticles Prepared by Microfluidic Mixing on Their Lymph Node Transitivity and Distribution.
    Nakamura T; Kawai M; Sato Y; Maeki M; Tokeshi M; Harashima H
    Mol Pharm; 2020 Mar; 17(3):944-953. PubMed ID: 31990567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery.
    Sato Y; Note Y; Maeki M; Kaji N; Baba Y; Tokeshi M; Harashima H
    J Control Release; 2016 May; 229():48-57. PubMed ID: 26995758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic Production and Application of Lipid Nanoparticles for Nucleic Acid Transfection.
    Thomas A; M Garg S; De Souza RAG; Ouellet E; Tharmarajah G; Reichert D; Ordobadi M; Ip S; Ramsay EC
    Methods Mol Biol; 2018; 1792():193-203. PubMed ID: 29797261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Substituting racemic ionizable lipids with stereopure ionizable lipids can increase mRNA delivery.
    Da Silva Sanchez AJ; Zhao K; Huayamares SG; Hatit MZC; Lokugamage MP; Loughrey D; Dobrowolski C; Wang S; Kim H; Paunovska K; Kuzminich Y; Dahlman JE
    J Control Release; 2023 Jan; 353():270-277. PubMed ID: 36423872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening.
    Guimaraes PPG; Zhang R; Spektor R; Tan M; Chung A; Billingsley MM; El-Mayta R; Riley RS; Wang L; Wilson JM; Mitchell MJ
    J Control Release; 2019 Dec; 316():404-417. PubMed ID: 31678653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ionizable Lipid with Supramolecular Chemistry Features for RNA Delivery In Vivo.
    Manning AM; Tilstra G; Khan AB; Couture-Senécal J; Lau YMA; Pang J; Abow AA; Robbins CS; Khan OF
    Small; 2023 Oct; 19(41):e2302917. PubMed ID: 37312676
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Algarni A; Pilkington EH; Suys EJA; Al-Wassiti H; Pouton CW; Truong NP
    Biomater Sci; 2022 May; 10(11):2940-2952. PubMed ID: 35475455
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spontaneous, solvent-free entrapment of siRNA within lipid nanoparticles.
    Kulkarni JA; Thomson SB; Zaifman J; Leung J; Wagner PK; Hill A; Tam YYC; Cullis PR; Petkau TL; Leavitt BR
    Nanoscale; 2020 Dec; 12(47):23959-23966. PubMed ID: 33241838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of novel cholesterol-based ionizable lipids for mRNA delivery.
    Qian R; Ullah A; Cui J; Cai X; Cao J; Wu L; Shen S
    Colloids Surf B Biointerfaces; 2024 Aug; 240():113980. PubMed ID: 38781845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mixing method used to formulate lipid nanoparticles affects mRNA delivery efficacy and organ tropism.
    Strelkova Petersen DM; Chaudhary N; Arral ML; Weiss RM; Whitehead KA
    Eur J Pharm Biopharm; 2023 Nov; 192():126-135. PubMed ID: 37838143
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the size-regulation of RNA-loaded lipid nanoparticles synthesized by microfluidic device.
    Okuda K; Sato Y; Iwakawa K; Sasaki K; Okabe N; Maeki M; Tokeshi M; Harashima H
    J Control Release; 2022 Aug; 348():648-659. PubMed ID: 35716883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intracellular trafficking kinetics of nucleic acid escape from lipid nanoparticles via fluorescence imaging.
    M Bailey-Hytholt C; Ulinski G; Dugas J; Haines M; Lazebnik M; Piepenhagen P; E Zarraga I; Bandekar A
    Curr Pharm Biotechnol; 2023 Apr; ():. PubMed ID: 37016519
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Process Robustness in Lipid Nanoparticle Production: A Comparison of Microfluidic and Turbulent Jet Mixing.
    O'Brien Laramy MN; Costa AP; Cebrero YM; Joseph J; Sarode A; Zang N; Kim LJ; Hofmann K; Wang S; Goyon A; Koenig SG; Hammel M; Hura GL
    Mol Pharm; 2023 Aug; 20(8):4285-4296. PubMed ID: 37462906
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increasing the siRNA knockdown efficiency of lipid nanoparticles by morphological transformation with the use of dihydrosphingomyelin as a helper lipid.
    Hashimoto M; Yonezawa S; Furan S; Nitta C; Maeda N; Tomita K; Yokouchi A; Koide H; Asai T
    Biomater Sci; 2023 May; 11(9):3269-3277. PubMed ID: 36939181
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Importance of Process Parameters Influencing the Mean Diameters of siRNA-Containing Lipid Nanoparticles (LNPs) on the in Vitro Activity of Prepared LNPs.
    Nakamura K; Aihara K; Ishida T
    Biol Pharm Bull; 2022; 45(4):497-507. PubMed ID: 35370275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acidic pH-induced changes in lipid nanoparticle membrane packing.
    Koitabashi K; Nagumo H; Nakao M; Machida T; Yoshida K; Sakai-Kato K
    Biochim Biophys Acta Biomembr; 2021 Aug; 1863(8):183627. PubMed ID: 33901441
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of Lipidoid Nanoparticles for siRNA Delivery to Neural Cells.
    Khare P; Dave KM; Kamte YS; Manoharan MA; O'Donnell LA; Manickam DS
    AAPS J; 2021 Dec; 24(1):8. PubMed ID: 34873640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automated high-throughput preparation and characterization of oligonucleotide-loaded lipid nanoparticles.
    Fan Y; Yen CW; Lin HC; Hou W; Estevez A; Sarode A; Goyon A; Bian J; Lin J; Koenig SG; Leung D; Nagapudi K; Zhang K
    Int J Pharm; 2021 Apr; 599():120392. PubMed ID: 33639228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic-Based Holonomic Constraints of siRNA in the Kernel of Lipid/Polymer Hybrid Nanoassemblies for Improving Stable and Safe In Vivo Delivery.
    Wei W; Sun J; Guo XY; Chen X; Wang R; Qiu C; Zhang HT; Pang WH; Wang JC; Zhang Q
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):14839-14854. PubMed ID: 32182035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.