BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35949192)

  • 1. Fatigue crack propagation and fracture toughness of cortical bone are radiation dose-dependent.
    Crocker DB; Hoffman I; Carter JLW; Akkus O; Rimnac CM
    J Orthop Res; 2023 Apr; 41(4):823-833. PubMed ID: 35949192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of gamma radiation sterilization on the fatigue crack propagation resistance of human cortical bone.
    Mitchell EJ; Stawarz AM; Kayacan R; Rimnac CM
    J Bone Joint Surg Am; 2004 Dec; 86(12):2648-57. PubMed ID: 15590849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The High-cycle Fatigue Life of Cortical Bone Allografts Is Radiation Sterilization Dose-dependent: An In Vitro Study.
    Ina J; Vakharia A; Akkus O; Rimnac CM
    Clin Orthop Relat Res; 2022 Jun; 480(6):1208-1219. PubMed ID: 35175232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose-dependent effects of gamma radiation sterilization on the collagen matrix of human cortical bone allograft and its influence on fatigue crack propagation resistance.
    Crocker DB; Hering TM; Akkus O; Oest ME; Rimnac CM
    Cell Tissue Bank; 2024 May; ():. PubMed ID: 38750214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-Freezing Temperatures During Irradiation Preserves the Compressive Strength of Human Cortical Bone Allografts: A Cadaver Study.
    Yang Harmony TC; Yusof N; Ramalingam S; Baharin R; Syahrom A; Mansor A
    Clin Orthop Relat Res; 2022 Feb; 480(2):407-418. PubMed ID: 34491235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic-plastic fracture toughness and rising JR-curve behavior of cortical bone is partially protected from irradiation-sterilization-induced degradation by ribose protectant.
    Woodside M; Willett TL
    J Mech Behav Biomed Mater; 2016 Dec; 64():53-64. PubMed ID: 27479894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gamma irradiation alters fatigue-crack behavior and fracture toughness in 1900H and GUR 1050 UHMWPE.
    Cole JC; Lemons JE; Eberhardt AW
    J Biomed Mater Res; 2002; 63(5):559-66. PubMed ID: 12209901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of gamma irradiation and supercritical carbon dioxide sterilization with Novakill™ or ethanol on the fracture toughness of cortical bone.
    Shin M; Pelletier MH; Lovric V; Walsh WR; Martens PJ; Kruzic JJ; Gludovatz B
    J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35356. PubMed ID: 38247241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman spectral markers of collagen denaturation and hydration in human cortical bone tissue are affected by radiation sterilization and high cycle fatigue damage.
    Flanagan CD; Unal M; Akkus O; Rimnac CM
    J Mech Behav Biomed Mater; 2017 Nov; 75():314-321. PubMed ID: 28772165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fracture toughness of human bone under tension.
    Norman TL; Vashishth D; Burr DB
    J Biomech; 1995 Mar; 28(3):309-20. PubMed ID: 7730389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fracture resistance of gamma radiation sterilized cortical bone allografts.
    Akkus O; Rimnac CM
    J Orthop Res; 2001 Sep; 19(5):927-34. PubMed ID: 11562143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.
    Fletcher L; Codrington J; Parkinson I
    J Mater Sci Mater Med; 2014 Jul; 25(7):1661-70. PubMed ID: 24715332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements.
    Vashishth D
    J Biomech; 2004 Jun; 37(6):943-6. PubMed ID: 15111083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of orientation and age on the crack propagation in cortical bone.
    Rahman N; Ur Rahman W; Khan R
    Biomed Mater Eng; 2018; 29(5):601-610. PubMed ID: 30400074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A critical evaluation of cortical bone fracture toughness testing methods.
    Dapaah D; Willett T
    J Mech Behav Biomed Mater; 2022 Oct; 134():105419. PubMed ID: 36037708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fracture mechanics of fatigue crack propagation in compact bone.
    Wright TM; Hayes WC
    J Biomed Mater Res; 1976 Jul; 10(4):637-48. PubMed ID: 947925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution, development and morphology of microcracking in cortical bone during crack propagation.
    Vashishth D; Tanner KE; Bonfield W
    J Biomech; 2000 Sep; 33(9):1169-74. PubMed ID: 10854892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructural fatigue fracture behavior of glycated cortical bone.
    Maghami E; Najafi A
    Med Biol Eng Comput; 2023 Nov; 61(11):3021-3034. PubMed ID: 37582979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ synchrotron radiation µCT indentation of cortical bone: Anisotropic crack propagation, local deformation, and fracture.
    Peña Fernández M; Schwiedrzik J; Bürki A; Peyrin F; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2023 Sep; 167():83-99. PubMed ID: 37127075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.