BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 35949397)

  • 1. Adipose tissue in bone regeneration - stem cell source and beyond.
    Labusca L
    World J Stem Cells; 2022 Jun; 14(6):372-392. PubMed ID: 35949397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adipose Tissue: Understanding the Heterogeneity of Stem Cells for Regenerative Medicine.
    Ong WK; Chakraborty S; Sugii S
    Biomolecules; 2021 Jun; 11(7):. PubMed ID: 34206204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review.
    Mizuno H
    J Nippon Med Sch; 2009 Apr; 76(2):56-66. PubMed ID: 19443990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different Sources of Mesenchymal Stem Cells for Tissue Regeneration: A Guide to Identifying the Most Favorable One in Orthopedics and Dentistry Applications.
    Costela-Ruiz VJ; Melguizo-Rodríguez L; Bellotti C; Illescas-Montes R; Stanco D; Arciola CR; Lucarelli E
    Int J Mol Sci; 2022 Jun; 23(11):. PubMed ID: 35683035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dedifferentiated Fat (DFAT) cells: A cell source for oral and maxillofacial tissue engineering.
    Kishimoto N; Honda Y; Momota Y; Tran SD
    Oral Dis; 2018 Oct; 24(7):1161-1167. PubMed ID: 29356251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regenerative Effects of Mesenchymal Stem Cells: Contribution of Muse Cells, a Novel Pluripotent Stem Cell Type that Resides in Mesenchymal Cells.
    Wakao S; Kuroda Y; Ogura F; Shigemoto T; Dezawa M
    Cells; 2012 Nov; 1(4):1045-60. PubMed ID: 24710542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adipose-derived stem cells and periodontal tissue engineering.
    Tobita M; Mizuno H
    Int J Oral Maxillofac Implants; 2013; 28(6):e487-93. PubMed ID: 24278946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue.
    Xu L; Liu Y; Sun Y; Wang B; Xiong Y; Lin W; Wei Q; Wang H; He W; Wang B; Li G
    Stem Cell Res Ther; 2017 Dec; 8(1):275. PubMed ID: 29208029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Adipose Stem Cells in Bone Regeneration and Bone Tissue Engineering.
    Mende W; Götzl R; Kubo Y; Pufe T; Ruhl T; Beier JP
    Cells; 2021 Apr; 10(5):. PubMed ID: 33919377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of adipose-derived stem cells in wound healing.
    Hassan WU; Greiser U; Wang W
    Wound Repair Regen; 2014; 22(3):313-25. PubMed ID: 24844331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regenerative potential of pluripotent nontumorgenetic stem cells: Multilineage differentiating stress enduring cells (Muse cells).
    Cao J; Yang Z; Xiao R; Pan B
    Regen Ther; 2020 Dec; 15():92-96. PubMed ID: 33426206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of calvarial bone healing with human bone marrow stromal cells versus inhibition with adipose-tissue stromal cells on nanostructured β-TCP-collagen.
    Bothe F; Lotz B; Seebach E; Fischer J; Hesse E; Diederichs S; Richter W
    Acta Biomater; 2018 Aug; 76():135-145. PubMed ID: 29933108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of Pig as a Model for Mesenchymal Stem Cell Therapies for Bone Regeneration.
    Rubessa M; Polkoff K; Bionaz M; Monaco E; Milner DJ; Holllister SJ; Goldwasser MS; Wheeler MB
    Anim Biotechnol; 2017 Oct; 28(4):275-287. PubMed ID: 28267421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muse cells, newly found non-tumorigenic pluripotent stem cells, reside in human mesenchymal tissues.
    Wakao S; Akashi H; Kushida Y; Dezawa M
    Pathol Int; 2014 Jan; 64(1):1-9. PubMed ID: 24471964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine.
    Ogura F; Wakao S; Kuroda Y; Tsuchiyama K; Bagheri M; Heneidi S; Chazenbalk G; Aiba S; Dezawa M
    Stem Cells Dev; 2014 Apr; 23(7):717-28. PubMed ID: 24256547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tendon regeneration and repair with adipose derived stem cells.
    Uysal AC; Mizuno H
    Curr Stem Cell Res Ther; 2010 Jun; 5(2):161-7. PubMed ID: 19941450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Buccal Fat Pad as a Potential Source of Stem Cells for Bone Regeneration: A Literature Review.
    Salehi-Nik N; Rezai Rad M; Kheiri L; Nazeman P; Nadjmi N; Khojasteh A
    Stem Cells Int; 2017; 2017():8354640. PubMed ID: 28757880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adipose tissue-derived stem cells and their application in bone and cartilage tissue engineering.
    Rada T; Reis RL; Gomes ME
    Tissue Eng Part B Rev; 2009 Jun; 15(2):113-25. PubMed ID: 19196117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Systemic Review of Adult Mesenchymal Stem Cell Sources and their Multilineage Differentiation Potential Relevant to Musculoskeletal Tissue Repair and Regeneration.
    Nancarrow-Lei R; Mafi P; Mafi R; Khan W
    Curr Stem Cell Res Ther; 2017; 12(8):601-610. PubMed ID: 28595566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct transplantation of native pericytes from adipose tissue: A new perspective to stimulate healing in critical size bone defects.
    König MA; Canepa DD; Cadosch D; Casanova E; Heinzelmann M; Rittirsch D; Plecko M; Hemmi S; Simmen HP; Cinelli P; Wanner GA
    Cytotherapy; 2016 Jan; 18(1):41-52. PubMed ID: 26563474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.