BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35950046)

  • 1. LEARNING TO CORRECT AXIAL MOTION IN OCT FOR 3D RETINAL IMAGING.
    Wang Y; Warter A; Cavichini-Cordeiro M; Freeman WR; Bartsch DG; Nguyen TQ; An C
    Proc Int Conf Image Proc; 2021 Sep; 2021():126-130. PubMed ID: 35950046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. JOINT MOTION CORRECTION AND 3D SEGMENTATION WITH GRAPH-ASSISTED NEURAL NETWORKS FOR RETINAL OCT.
    Wang Y; Galang C; Freeman WR; Nguyen TQ; An C
    Proc Int Conf Image Proc; 2022 Oct; 2022():766-770. PubMed ID: 37342228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second.
    Potsaid B; Gorczynska I; Srinivasan VJ; Chen Y; Jiang J; Cable A; Fujimoto JG
    Opt Express; 2008 Sep; 16(19):15149-69. PubMed ID: 18795054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion artefact correction in retinal optical coherence tomography using local symmetry.
    Montuoro A; Wu J; Waldstein S; Gerendas B; Langs G; Simader C; Schmidt-Erfurth U
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 2):130-7. PubMed ID: 25485371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Higher-order regression three-dimensional motion-compensation method for real-time optical coherence tomography volumetric imaging of the cornea.
    Zuo R; Irsch K; Kang JU
    J Biomed Opt; 2022 Jun; 27(6):. PubMed ID: 35751143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?
    Baghaie A; Yu Z; D'Souza RM
    Med Image Anal; 2017 Apr; 37():129-145. PubMed ID: 28208100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns.
    Kraus MF; Potsaid B; Mayer MA; Bock R; Baumann B; Liu JJ; Hornegger J; Fujimoto JG
    Biomed Opt Express; 2012 Jun; 3(6):1182-99. PubMed ID: 22741067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress on Developing Adaptive Optics-Optical Coherence Tomography for
    Zawadzki RJ; Capps AG; Kim DY; Panorgias A; Stevenson SB; Hamann B; Werner JS
    IEEE J Sel Top Quantum Electron; 2014 Mar; 20(2):. PubMed ID: 25544826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correcting intra-volume distortion for AO-OCT using 3D correlation based registration.
    Li Z; Pandiyan VP; Maloney-Bertelli A; Jiang X; Li X; Sabesan R
    Opt Express; 2020 Dec; 28(25):38390-38409. PubMed ID: 33379652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heartbeat-induced axial motion artifacts in optical coherence tomography measurements of the retina.
    de Kinkelder R; Kalkman J; Faber DJ; Schraa O; Kok PH; Verbraak FD; van Leeuwen TG
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3908-13. PubMed ID: 21467182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal cross-section motion correction in three-dimensional retinal optical coherence tomography.
    Wu N; Yi M; Guan C; Wang M; Zhang Z; Yang X; Li H; Han D; Zeng Y; Tang Z
    J Biophotonics; 2021 Jun; 14(6):e202000443. PubMed ID: 33576160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography.
    Perdomo O; Rios H; Rodríguez FJ; Otálora S; Meriaudeau F; Müller H; González FA
    Comput Methods Programs Biomed; 2019 Sep; 178():181-189. PubMed ID: 31416547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study of Motion Artifacts Correction Algorithm in Optical Coherence Tomography Images Based on C-Scan of Optic Disc].
    Gao Z; Li Y; Wang L; Li Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2016 Mar; 40(2):90-4. PubMed ID: 29763219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction.
    Pircher M; Baumann B; Götzinger E; Sattmann H; Hitzenberger CK
    Opt Express; 2007 Dec; 15(25):16922-32. PubMed ID: 19550983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevalences of segmentation errors and motion artifacts in OCT-angiography differ among retinal diseases.
    Lauermann JL; Woetzel AK; Treder M; Alnawaiseh M; Clemens CR; Eter N; Alten F
    Graefes Arch Clin Exp Ophthalmol; 2018 Oct; 256(10):1807-1816. PubMed ID: 29982897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network.
    Lu D; Heisler M; Lee S; Ding GW; Navajas E; Sarunic MV; Beg MF
    Med Image Anal; 2019 May; 54():100-110. PubMed ID: 30856455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo imaging of the rodent eye with swept source/Fourier domain OCT.
    Liu JJ; Grulkowski I; Kraus MF; Potsaid B; Lu CD; Baumann B; Duker JS; Hornegger J; Fujimoto JG
    Biomed Opt Express; 2013 Feb; 4(2):351-63. PubMed ID: 23412778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography.
    Povazay B; Hofer B; Torti C; Hermann B; Tumlinson AR; Esmaeelpour M; Egan CA; Bird AC; Drexler W
    Opt Express; 2009 Mar; 17(5):4134-50. PubMed ID: 19259251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CNN-based CP-OCT sensor integrated with a subretinal injector for retinal boundary tracking and injection guidance.
    Lee S; Kang J
    J Biomed Opt; 2021 Jun; 26(6):. PubMed ID: 34196137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions.
    Zawadzki RJ; Choi SS; Jones SM; Oliver SS; Werner JS
    J Opt Soc Am A Opt Image Sci Vis; 2007 May; 24(5):1373-83. PubMed ID: 17429483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.