These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35950323)

  • 1. Ion transport mechanism in anhydrous lithium thiocyanate LiSCN part II: frequency dependence and slow jump relaxation.
    Joos M; Conrad M; Moudrakovski I; Terban MW; Rad A; Kaghazchi P; Merkle R; Dinnebier RE; Schleid T; Maier J
    Phys Chem Chem Phys; 2022 Aug; 24(34):20198-20209. PubMed ID: 35950323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion transport mechanism in anhydrous lithium thiocyanate LiSCN Part I: ionic conductivity and defect chemistry.
    Joos M; Conrad M; Rad A; Kaghazchi P; Bette S; Merkle R; Dinnebier RE; Schleid T; Maier J
    Phys Chem Chem Phys; 2022 Aug; 24(34):20189-20197. PubMed ID: 35971978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Disorder in Li
    Brinek M; Hiebl C; Hogrefe K; Hanghofer I; Wilkening HMR
    J Phys Chem C Nanomater Interfaces; 2020 Oct; 124(42):22934-22940. PubMed ID: 33193940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cation effects on rotational dynamics of anions and water molecules in alkali (Li+, Na+, K+, Cs+) thiocyanate (SCN-) aqueous solutions.
    Bian H; Chen H; Zhang Q; Li J; Wen X; Zhuang W; Zheng J
    J Phys Chem B; 2013 Jul; 117(26):7972-84. PubMed ID: 23763605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion transport mechanism in anhydrous lithium thiocyanate LiSCN part III: charge carrier interactions in the premelting regime.
    Joos M; Conrad M; Bette S; Merkle R; Dinnebier RE; Schleid T; Maier J
    Phys Chem Chem Phys; 2022 Aug; 24(34):20210-20218. PubMed ID: 35993871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Understanding of the Li-Ion Migration Pathways in the Lithium Aluminum Sulfides Li
    Duff BB; Elliott SJ; Gamon J; Daniels LM; Rosseinsky MJ; Blanc F
    Chem Mater; 2023 Jan; 35(1):27-40. PubMed ID: 36644214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics study of cage decay, near constant loss, and crossover to cooperative ion hopping in lithium metasilicate.
    Habasaki J; Ngai KL; Hiwatari Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021205. PubMed ID: 12241162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast Li ion dynamics in the solid electrolyte Li7 P3 S11 as probed by (6,7) Li NMR spin-lattice relaxation.
    Wohlmuth D; Epp V; Wilkening M
    Chemphyschem; 2015 Aug; 16(12):2582-93. PubMed ID: 26192263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peculiarities of ionic transport in Li(1.3)Al(0.15)Y(0.15)Ti(1.7)(PO(4))(3) ceramics.
    Salkus T; Kazakevičius E; Kežionis A; Dindune A; Kanepe Z; Ronis J; Emery J; Boulant A; Bohnke O; Orliukas AF
    J Phys Condens Matter; 2009 May; 21(18):185502. PubMed ID: 21825465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Li
    Liang X; Jiang Y; Cai W; Wu S; Wang L; Lei Z; Chen J; Lei Y; Yang L; Feng J
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27029-27036. PubMed ID: 32459952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-range Li+ dynamics in the lithium argyrodite Li7PSe6 as probed by rotating-frame spin-lattice relaxation NMR.
    Epp V; Gün O; Deiseroth HJ; Wilkening M
    Phys Chem Chem Phys; 2013 May; 15(19):7123-32. PubMed ID: 23552568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for anionic cation transport of lithium, sodium and potassium across the human erythrocyte membrane induced by divalent anions.
    Becker BF; Duhm J
    J Physiol; 1978 Sep; 282():149-68. PubMed ID: 31458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance studies on the rotational and translational motions of ionic liquids composed of 1-ethyl-3-methylimidazolium cation and bis(trifluoromethanesulfonyl)amide and bis(fluorosulfonyl)amide anions and their binary systems including lithium salts.
    Hayamizu K; Tsuzuki S; Seki S; Umebayashi Y
    J Chem Phys; 2011 Aug; 135(8):084505. PubMed ID: 21895197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Very fast bulk Li ion diffusivity in crystalline Li(1.5)Al(0.5)Ti(1.5)(PO4)3 as seen using NMR relaxometry.
    Epp V; Ma Q; Hammer EM; Tietz F; Wilkening M
    Phys Chem Chem Phys; 2015 Dec; 17(48):32115-21. PubMed ID: 26580669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. With a Little Help from
    Hogrefe K; Hanghofer I; Wilkening HMR
    J Phys Chem C Nanomater Interfaces; 2021 Oct; 125(41):22457-22463. PubMed ID: 34712377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterisation of two lithium-thiocyanate solvates with tetrahydrofuran: Li[SCN]·THF and Li[SCN]·2THF.
    Conrad M; Joos M; Bette S; Dinnebier RE; Maier J; Schleid T
    Dalton Trans; 2021 Sep; 50(35):12292-12300. PubMed ID: 34519744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anion and Cation Dynamics in Polyhydroborate Salts: NMR Studies.
    Skripov AV; Soloninin AV; Babanova OA; Skoryunov RV
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32604750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncovering the binding nature of thiocyanate in contact ion pairs with lithium ions.
    Deshmukh SH; Nachaki EO; Kuroda DG
    J Chem Phys; 2024 Jul; 161(3):. PubMed ID: 39017430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the Li-ion conduction behavior in the Li
    Paulus MC; Graf MF; Harks PPRML; Paulus A; Schleker PPM; Notten PHL; Eichel RA; Granwehr J
    J Magn Reson; 2018 Sep; 294():133-142. PubMed ID: 30041071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.