These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35950549)

  • 1. Toughened Hydrogels for 3D Printing of Soft Auxetic Structures.
    Pruksawan S; Chee HL; Wang Z; Luo P; Chong YT; Thitsartarn W; Wang F
    Chem Asian J; 2022 Oct; 17(19):e202200677. PubMed ID: 35950549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly{(2-hydroxyethyl methacrylate)-co-[poly(ethylene glycol) methyl ether methacrylate]} hydrogels containing peptide-based cross-linking agents.
    Casadio YS; Brown DH; Chirila TV; Kraatz HB; Baker MV
    Biomacromolecules; 2010 Nov; 11(11):2949-59. PubMed ID: 20961104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel scaffolds based on poly(2-hydroxyethyl methacrylate) superporous hydrogels for bone tissue engineering.
    Çetin D; Kahraman AS; Gümüşderelioğlu M
    J Biomater Sci Polym Ed; 2011; 22(9):1157-78. PubMed ID: 20615330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically enhanced nested-network hydrogels as a coating material for biomedical devices.
    Wang Z; Zhang H; Chu AJ; Jackson J; Lin K; Lim CJ; Lange D; Chiao M
    Acta Biomater; 2018 Apr; 70():98-109. PubMed ID: 29447960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-Printed Electroactive Hydrogel Architectures with Sub-100 µm Resolution Promote Myoblast Viability.
    Keate RL; Tropp J; Collins CP; Ware HOT; Petty AJ; Ameer GA; Sun C; Rivnay J
    Macromol Biosci; 2022 Aug; 22(8):e2200103. PubMed ID: 35596668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose Nanocrystals-Incorporated Thermosensitive Hydrogel for Controlled Release, 3D Printing, and Breast Cancer Treatment Applications.
    Phan VHG; Murugesan M; Huong H; Le TT; Phan TH; Manivasagan P; Mathiyalagan R; Jang ES; Yang DC; Li Y; Thambi T
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):42812-42826. PubMed ID: 36112403
    [No Abstract]   [Full Text] [Related]  

  • 7. 3D Printing of Ultratough Polyion Complex Hydrogels.
    Zhu F; Cheng L; Yin J; Wu ZL; Qian J; Fu J; Zheng Q
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31304-31310. PubMed ID: 27779379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite.
    Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q
    J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A transparent wound dressing based on bacterial cellulose whisker and poly(2-hydroxyethyl methacrylate).
    Di Z; Shi Z; Ullah MW; Li S; Yang G
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):638-644. PubMed ID: 28716748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels.
    Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loose Pre-Cross-Linking Mediating Cellulose Self-Assembly for 3D Printing Strong and Tough Biomimetic Scaffolds.
    Guo J; Li Q; Zhang R; Li B; Zhang J; Yao L; Lin Z; Zhang L; Cao X; Duan B
    Biomacromolecules; 2022 Mar; 23(3):877-888. PubMed ID: 35142493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tribological Properties of Micropored Poly(2-hydroxyethyl methacrylate) Hydrogels in a Biomimetic Aqueous Environment.
    Xi Y; Sharma PK; Kaper HJ; Choi CH
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41473-41484. PubMed ID: 34449208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printable Strain Sensors from Deep Eutectic Solvents and Cellulose Nanocrystals.
    Lai CW; Yu SS
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34235-34244. PubMed ID: 32614162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and fabrication strategies of cellulose nanocrystal-based hydrogel and its highlighted application using 3D printing: A review.
    He X; Lu Q
    Carbohydr Polym; 2023 Feb; 301(Pt B):120351. PubMed ID: 36446511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printing of Auxetic Metamaterials with Digitally Reprogrammable Shape.
    Lei M; Hong W; Zhao Z; Hamel C; Chen M; Lu H; Qi HJ
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22768-22776. PubMed ID: 31140776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing of Biocompatible Shape-Memory Double Network Hydrogels.
    Chen J; Huang J; Hu Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12726-12734. PubMed ID: 33336570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable HEMA-based hydrogels with enhanced mechanical properties.
    Moghadam MN; Pioletti DP
    J Biomed Mater Res B Appl Biomater; 2016 Aug; 104(6):1161-9. PubMed ID: 26061346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation Behavior of 3D Printed Auxetic Structures of Thermoplastic Polymers: PLA, PBAT, and Blends.
    Hufert J; Grebhardt A; Schneider Y; Bonten C; Schmauder S
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogels Containing Core Cross-Linked Block Co-Polymer Micelles.
    Lu C; Mikhail AS; Wang X; Brook MA; Allen C
    J Biomater Sci Polym Ed; 2012; 23(8):1069-90. PubMed ID: 21619728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro- and nanoscale modification of poly(2-hydroxyethyl methacrylate) hydrogels by AFM lithography and nanoparticle incorporation.
    Podestà A; Ranucci E; Macchi L; Bongiorno G; Ferruti P; Milani P
    J Nanosci Nanotechnol; 2005 Mar; 5(3):425-30. PubMed ID: 15913250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.