BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

35 related articles for article (PubMed ID: 35950552)

  • 1. Adaptive machine learning method for photoacoustic computed tomography based on sparse array sensor data.
    Wang R; Zhu J; Meng Y; Wang X; Chen R; Wang K; Li C; Shi J
    Comput Methods Programs Biomed; 2023 Dec; 242():107822. PubMed ID: 37832425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of 10 current image reconstruction algorithms for linear array photoacoustic imaging.
    Prakash R; Manwar R; Avanaki K
    J Biophotonics; 2024 Mar; 17(3):e202300117. PubMed ID: 38010300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion).
    Singh MK; Jaeger M; Frenz M; Steenbergen W
    Biomed Opt Express; 2016 Aug; 7(8):2955-72. PubMed ID: 27570690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artifact reduction in photoacoustic images by generating virtual dense array sensor from hemispheric sparse array sensor using deep learning.
    Yamakawa M; Shiina T
    J Med Ultrason (2001); 2024 Apr; 51(2):169-183. PubMed ID: 38480548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Importance of Low-Frequency Signals in Functional and Molecular Photoacoustic Computed Tomography.
    Vu T; Klippel P; Canning AJ; Ma C; Zhang H; Kasatkina LA; Tang Y; Xia J; Verkhusha VV; Vo-Dinh T; Jing Y; Yao J
    IEEE Trans Med Imaging; 2024 Feb; 43(2):771-783. PubMed ID: 37773898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-Wave Accelerates Optimization-based Photoacoustic Image Reconstruction in vivo.
    Shen Y; Zhang J; Jiang D; Gao Z; Zheng Y; Gao F; Gao F
    Ultrasound Med Biol; 2024 Jan; 50(1):18-27. PubMed ID: 37806923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reflection artifact identification in photoacoustic imaging using multi-wavelength excitation.
    Nguyen HNY; Hussain A; Steenbergen W
    Biomed Opt Express; 2018 Oct; 9(10):4613-4630. PubMed ID: 30319890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Location-Dependent Spatiotemporal Antialiasing in Photoacoustic Computed Tomography.
    Hu P; Li L; Wang LV
    IEEE Trans Med Imaging; 2023 Apr; 42(4):1210-1224. PubMed ID: 36449587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoacoustic reflection artifact reduction using photoacoustic-guided focused ultrasound: comparison between plane-wave and element-by-element synthetic backpropagation approach.
    Singh MKA; Jaeger M; Frenz M; Steenbergen W
    Biomed Opt Express; 2017 Apr; 8(4):2245-2260. PubMed ID: 28736669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An extremum-guided interpolation for sparsely sampled photoacoustic imaging.
    Wang H; Yan L; Ma C; Han Y
    Photoacoustics; 2023 Aug; 32():100535. PubMed ID: 37519337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoacoustic-guided focused ultrasound (PAFUSion) for identifying reflection artifacts in photoacoustic imaging.
    Kuniyil Ajith Singh M; Steenbergen W
    Photoacoustics; 2015 Dec; 3(4):123-131. PubMed ID: 31467843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of non-contact foreign body imaging base on photoacoustic signal intensity measurement.
    Setiawan A; Huang CY; Mitrayana M
    J Appl Clin Med Phys; 2024 May; 25(5):e14230. PubMed ID: 38014732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of advanced signal processing and source imaging methods for superparamagnetic relaxometry.
    Huang MX; Anderson B; Huang CW; Kunde GJ; Vreeland EC; Huang JW; Matlashov AN; Karaulanov T; Nettles CP; Gomez A; Minser K; Weldon C; Paciotti G; Harsh M; Lee RR; Flynn ER
    Phys Med Biol; 2017 Feb; 62(3):734-757. PubMed ID: 28072579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saliency enhancement method for photoacoustic molecular imaging based on Grüneisen relaxation nonlinear effect.
    Wang X; Xie Z; Lin R; Shu C; Lv S; Guo P; Xu H; Zhang J; Dong L; Gong X
    J Biophotonics; 2024 Jun; 17(6):e202400004. PubMed ID: 38531622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reducing artifacts in photoacoustic imaging by using multi-wavelength excitation and transducer displacement.
    Nguyen HNY; Steenbergen W
    Biomed Opt Express; 2019 Jul; 10(7):3124-3138. PubMed ID: 31467773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the importance of low-frequency signals in functional and molecular photoacoustic computed tomography.
    Vu T; Klippel P; Canning AJ; Ma C; Zhang H; Kasatkina LA; Tang Y; Xia J; Verkhusha VV; Vo-Dinh T; Jing Y; Yao J
    ArXiv; 2023 Aug; ():. PubMed ID: 37576129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion-compensated noninvasive periodontal health monitoring using handheld and motor-based photoacoustic-ultrasound imaging systems.
    Mozaffarzadeh M; Moore C; Golmoghani EB; Mantri Y; Hariri A; Jorns A; Fu L; Verweij MD; Orooji M; de Jong N; Jokerst JV
    Biomed Opt Express; 2021 Mar; 12(3):1543-1558. PubMed ID: 33796371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized Reconstruction Procedure of Photoacoustic Imaging for Reflection Artifacts Reduction.
    Qi Y; Cao H; Yin G; Zhang B; Guo J
    Ultrason Imaging; 2022 Nov; 44(5-6):204-212. PubMed ID: 35950552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of acoustic reflection artifact in endoscopic photoacoustic tomographic images based on approximation of ideal signals.
    Sun Z; Zhang X
    Technol Health Care; 2022; 30(S1):201-214. PubMed ID: 35124597
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.