These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35950905)

  • 1. Rational Designing of Bimetallic/Trimetallic Hydrogen Evolution Reaction Catalysts Using Supervised Machine Learning.
    Pandit NK; Roy D; Mandal SC; Pathak B
    J Phys Chem Lett; 2022 Aug; 13(32):7583-7593. PubMed ID: 35950905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO
    Roy D; Mandal SC; Pathak B
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56151-56163. PubMed ID: 34787997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symbolic Transformer Accelerating Machine Learning Screening of Hydrogen and Deuterium Evolution Reaction Catalysts in MA
    Zheng J; Sun X; Hu J; Wang S; Yao Z; Deng S; Pan X; Pan Z; Wang J
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):50878-50891. PubMed ID: 34672634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Trends in Synthesis and Investigation of Nickel Phosphide Compound/Hybrid-Based Electrocatalysts Towards Hydrogen Generation from Water Electrocatalysis.
    Khalafallah D; Zhi M; Hong Z
    Top Curr Chem (Cham); 2019 Oct; 377(6):29. PubMed ID: 31605243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-precious metal-based heterostructure catalysts for hydrogen evolution reaction: mechanisms, design principles, and future prospects.
    Sun M; Li Y; Wang S; Wang Z; Li Z; Zhang T
    Nanoscale; 2023 Aug; 15(33):13515-13531. PubMed ID: 37580995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts.
    Tian D; Denny SR; Li K; Wang H; Kattel S; Chen JG
    Chem Soc Rev; 2021 Nov; 50(22):12338-12376. PubMed ID: 34580693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in metal-organic frameworks for electrocatalytic hydrogen evolution and overall water splitting reactions.
    Budnikova YH
    Dalton Trans; 2020 Sep; 49(36):12483-12502. PubMed ID: 32756705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defect engineering in two-dimensional electrocatalysts for hydrogen evolution.
    Xie J; Yang X; Xie Y
    Nanoscale; 2020 Feb; 12(7):4283-4294. PubMed ID: 32043515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions.
    Kim J; Kim HE; Lee H
    ChemSusChem; 2018 Jan; 11(1):104-113. PubMed ID: 28895315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction.
    Deng J; Ren P; Deng D; Bao X
    Angew Chem Int Ed Engl; 2015 Feb; 54(7):2100-4. PubMed ID: 25565666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational prediction of multifunctional bilayer single atom catalysts for the hydrogen evolution, oxygen evolution and oxygen reduction reactions.
    Hu R; Li Y; Wang F; Shang J
    Nanoscale; 2020 Oct; 12(39):20413-20424. PubMed ID: 33026034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Earth-Abundant Transition-Metal-Based Bifunctional Electrocatalysts for Overall Water Splitting in Alkaline Media.
    Yu J; Le TA; Tran NQ; Lee H
    Chemistry; 2020 May; 26(29):6423-6436. PubMed ID: 32103541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances.
    Wang J; Gao Y; Kong H; Kim J; Choi S; Ciucci F; Hao Y; Yang S; Shao Z; Lim J
    Chem Soc Rev; 2020 Dec; 49(24):9154-9196. PubMed ID: 33140778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategic Design of a Bifunctional NiFeCoW@NC Hybrid to Replace the Noble Platinum for Dye-Sensitized Solar Cells and Hydrogen Evolution Reactions.
    Wang T; Xu M; Ma C; Gu Y; Chen W; Li Y; Gong J; Ji T; Chen W
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25010-25023. PubMed ID: 34008956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfur-Doped CoSe
    Xue N; Lin Z; Li P; Diao P; Zhang Q
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28288-28297. PubMed ID: 32490660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate and efficient machine learning models for predicting hydrogen evolution reaction catalysts based on structural and electronic feature engineering in alloys.
    Zhang J; Wang Y; Zhou X; Zhong C; Zhang K; Liu J; Hu K; Lin X
    Nanoscale; 2023 Jul; 15(26):11072-11082. PubMed ID: 37335261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pt- and Pd-modified transition metal nitride catalysts for the hydrogen evolution reaction.
    Ologunagba D; Kattel S
    Phys Chem Chem Phys; 2022 May; 24(20):12149-12157. PubMed ID: 35437533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-Step Growth of Iron-Nickel Bimetallic Nanoparticles on FeNi Alloy Foils: Highly Efficient Advanced Electrodes for the Oxygen Evolution Reaction.
    Qazi UY; Yuan CZ; Ullah N; Jiang YF; Imran M; Zeb A; Zhao SJ; Javaid R; Xu AW
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28627-28634. PubMed ID: 28825790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.