These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35950915)

  • 41. Seasonal Regulation of Petal Number.
    McKim SM; Routier-Kierzkowska AL; Monniaux M; Kierzkowski D; Pieper B; Smith RS; Tsiantis M; Hay A
    Plant Physiol; 2017 Oct; 175(2):886-903. PubMed ID: 28860156
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A spatial dissection of the Arabidopsis floral transcriptome by MPSS.
    Peiffer JA; Kaushik S; Sakai H; Arteaga-Vazquez M; Sanchez-Leon N; Ghazal H; Vielle-Calzada JP; Meyers BC
    BMC Plant Biol; 2008 Apr; 8():43. PubMed ID: 18426585
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis.
    Sundström JF; Nakayama N; Glimelius K; Irish VF
    Plant J; 2006 May; 46(4):593-600. PubMed ID: 16640596
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling.
    Mara CD; Huang T; Irish VF
    Plant Cell; 2010 Mar; 22(3):690-702. PubMed ID: 20305124
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Activation of the Arabidopsis B class homeotic genes by APETALA1.
    Ng M; Yanofsky MF
    Plant Cell; 2001 Apr; 13(4):739-53. PubMed ID: 11283333
    [TBL] [Abstract][Full Text] [Related]  

  • 46. ROXY1, a member of the plant glutaredoxin family, is required for petal development in Arabidopsis thaliana.
    Xing S; Rosso MG; Zachgo S
    Development; 2005 Apr; 132(7):1555-65. PubMed ID: 15728668
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular Mechanisms of Floral Boundary Formation in Arabidopsis.
    Yu H; Huang T
    Int J Mol Sci; 2016 Mar; 17(3):317. PubMed ID: 26950117
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ectopic expression of SUPERMAN suppresses development of petals and stamens.
    Yun JY; Weigel D; Lee I
    Plant Cell Physiol; 2002 Jan; 43(1):52-7. PubMed ID: 11828022
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic ablation of petal and stamen primordia to elucidate cell interactions during floral development.
    Day CD; Galgoci BF; Irish VF
    Development; 1995 Sep; 121(9):2887-95. PubMed ID: 7555715
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel functions of the Arabidopsis transcription factor TCP5 in petal development and ethylene biosynthesis.
    van Es SW; Silveira SR; Rocha DI; Bimbo A; Martinelli AP; Dornelas MC; Angenent GC; Immink RGH
    Plant J; 2018 Jun; 94(5):867-879. PubMed ID: 29570883
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3.
    Hill TA; Day CD; Zondlo SC; Thackeray AG; Irish VF
    Development; 1998 May; 125(9):1711-21. PubMed ID: 9521909
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cytokinin pathway mediates APETALA1 function in the establishment of determinate floral meristems in Arabidopsis.
    Han Y; Zhang C; Yang H; Jiao Y
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6840-5. PubMed ID: 24753595
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A phylogenetically conserved APETALA2/ETHYLENE RESPONSE FACTOR, ERF12, regulates Arabidopsis floral development.
    Chandler JW; Werr W
    Plant Mol Biol; 2020 Jan; 102(1-2):39-54. PubMed ID: 31807981
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cloning and functional characterization of a floral repressor gene from Lavandula angustifolia.
    Wells RS; Adal AM; Bauer L; Najafianashrafi E; Mahmoud SS
    Planta; 2020 Jan; 251(2):41. PubMed ID: 31907678
    [TBL] [Abstract][Full Text] [Related]  

  • 55. FRL1 is required for petal and sepal development in Arabidopsis.
    Hase Y; Tanaka A; Baba T; Watanabe H
    Plant J; 2000 Oct; 24(1):21-32. PubMed ID: 11029701
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia.
    Souer E; Rebocho AB; Bliek M; Kusters E; de Bruin RA; Koes R
    Plant Cell; 2008 Aug; 20(8):2033-48. PubMed ID: 18713949
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An epigenetic timer regulates the transition from cell division to cell expansion during Arabidopsis petal organogenesis.
    Huang R; Irish VF
    PLoS Genet; 2024 Mar; 20(3):e1011203. PubMed ID: 38442104
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Variation in the expression of a transmembrane protein influences cell growth in Arabidopsis thaliana petals by altering auxin responses.
    Miller CN; Dumenil J; Lu FH; Smith C; McKenzie N; Chapman V; Ball J; Box M; Bevan M
    BMC Plant Biol; 2020 Oct; 20(1):482. PubMed ID: 33092536
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An activated form of UFO alters leaf development and produces ectopic floral and inflorescence meristems.
    Risseeuw E; Venglat P; Xiang D; Komendant K; Daskalchuk T; Babic V; Crosby W; Datla R
    PLoS One; 2013; 8(12):e83807. PubMed ID: 24376756
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recessive loci Pps-1 and OM differentially regulate PISTILLATA-1 and APETALA3-1 expression for sepal and petal development in Papaver somniferum.
    Singh SK; Shukla AK; Dhawan OP; Shasany AK
    PLoS One; 2014; 9(6):e101272. PubMed ID: 24979593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.