These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 35950915)
61. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 2 controls floral organ development and plant fertility by activating ASYMMETRIC LEAVES 2 in Arabidopsis thaliana. Wang Z; Wang Y; Kohalmi SE; Amyot L; Hannoufa A Plant Mol Biol; 2016 Dec; 92(6):661-674. PubMed ID: 27605094 [TBL] [Abstract][Full Text] [Related]
62. HANABA TARANU (HAN) Bridges Meristem and Organ Primordia Boundaries through PINHEAD, JAGGED, BLADE-ON-PETIOLE2 and CYTOKININ OXIDASE 3 during Flower Development in Arabidopsis. Ding L; Yan S; Jiang L; Zhao W; Ning K; Zhao J; Liu X; Zhang J; Wang Q; Zhang X PLoS Genet; 2015 Sep; 11(9):e1005479. PubMed ID: 26390296 [TBL] [Abstract][Full Text] [Related]
63. The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Baker CC; Sieber P; Wellmer F; Meyerowitz EM Curr Biol; 2005 Feb; 15(4):303-15. PubMed ID: 15723790 [TBL] [Abstract][Full Text] [Related]
64. An NAC transcription factor controls ethylene-regulated cell expansion in flower petals. Pei H; Ma N; Tian J; Luo J; Chen J; Li J; Zheng Y; Chen X; Fei Z; Gao J Plant Physiol; 2013 Oct; 163(2):775-91. PubMed ID: 23933991 [TBL] [Abstract][Full Text] [Related]
65. The KNOXI Transcription Factor SHOOT MERISTEMLESS Regulates Floral Fate in Arabidopsis. Roth O; Alvarez JP; Levy M; Bowman JL; Ori N; Shani E Plant Cell; 2018 Jun; 30(6):1309-1321. PubMed ID: 29743198 [TBL] [Abstract][Full Text] [Related]
66. A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression. Castillejo C; Romera-Branchat M; Pelaz S Plant J; 2005 Aug; 43(4):586-96. PubMed ID: 16098111 [TBL] [Abstract][Full Text] [Related]
67. A gain-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis. Li X; Qin G; Chen Z; Gu H; Qu LJ Plant Mol Biol; 2008 Feb; 66(3):315-27. PubMed ID: 18080804 [TBL] [Abstract][Full Text] [Related]
68. The role of Monniaux M; Pieper B; McKim SM; Routier-Kierzkowska AL; Kierzkowski D; Smith RS; Hay A Elife; 2018 Oct; 7():. PubMed ID: 30334736 [TBL] [Abstract][Full Text] [Related]
69. An APETALA1-like gene of soybean regulates flowering time and specifies floral organs. Chi Y; Huang F; Liu H; Yang S; Yu D J Plant Physiol; 2011 Dec; 168(18):2251-9. PubMed ID: 21963279 [TBL] [Abstract][Full Text] [Related]
70. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Chae E; Tan QK; Hill TA; Irish VF Development; 2008 Apr; 135(7):1235-45. PubMed ID: 18287201 [TBL] [Abstract][Full Text] [Related]
71. In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. Urbanus SL; de Folter S; Shchennikova AV; Kaufmann K; Immink RG; Angenent GC BMC Plant Biol; 2009 Jan; 9():5. PubMed ID: 19138429 [TBL] [Abstract][Full Text] [Related]
72. Regulation of flower development in Arabidopsis by SCF complexes. Ni W; Xie D; Hobbie L; Feng B; Zhao D; Akkara J; Ma H Plant Physiol; 2004 Apr; 134(4):1574-85. PubMed ID: 15047903 [TBL] [Abstract][Full Text] [Related]
73. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Ellis CM; Nagpal P; Young JC; Hagen G; Guilfoyle TJ; Reed JW Development; 2005 Oct; 132(20):4563-74. PubMed ID: 16176952 [TBL] [Abstract][Full Text] [Related]
74. Arabidopsis transcription factor TCP4 represses chlorophyll biosynthesis to prevent petal greening. Zheng X; Lan J; Yu H; Zhang J; Zhang Y; Qin Y; Su XD; Qin G Plant Commun; 2022 Jul; 3(4):100309. PubMed ID: 35605201 [TBL] [Abstract][Full Text] [Related]
75. PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis. Noh YS; Amasino RM Plant Cell; 2003 Jul; 15(7):1671-82. PubMed ID: 12837955 [TBL] [Abstract][Full Text] [Related]
76. Transcriptomic and hormone analyses reveal mechanisms underlying petal elongation in Chrysanthemum morifolium 'Jinba'. Wang J; Wang H; Ding L; Song A; Shen F; Jiang J; Chen S; Chen F Plant Mol Biol; 2017 Apr; 93(6):593-606. PubMed ID: 28108965 [TBL] [Abstract][Full Text] [Related]
78. RNA-Binding Protein MAC5A Is Required for Gibberellin-Regulated Stamen Development. Liu H; Shang H; Yang H; Liu W; Tsugama D; Nonomura KI; Zhou A; Wu W; Takano T; Liu S Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216125 [TBL] [Abstract][Full Text] [Related]
79. A sepal-expressed ADP-glucose pyrophosphorylase gene (NtAGP) is required for petal expansion growth in 'Xanthi' tobacco. Kwak MS; Min SR; Lee SM; Kim KN; Liu JR; Paek KH; Shin JS; Bae JM Plant Physiol; 2007 Sep; 145(1):277-89. PubMed ID: 17660352 [TBL] [Abstract][Full Text] [Related]
80. The promoter of the carotenoid cleavage dioxygenase 4a-5 gene of Chrysanthemum morifolium (CmCCD4a-5) drives petal-specific transcription of a conjugated gene in the developing flower. Imai A; Takahashi S; Nakayama K; Satoh H J Plant Physiol; 2013 Sep; 170(14):1295-9. PubMed ID: 23643306 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]