These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 35951117)

  • 1. Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning.
    Denizdurduran B; Markram H; Gewaltig MO
    Biol Cybern; 2022 Dec; 116(5-6):711-726. PubMed ID: 35951117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Motion Learning for Goal-Oriented Movements With Speed-Accuracy Tradeoff of a Musculoskeletal System.
    Zhou J; Zhong S; Wu W
    IEEE Trans Cybern; 2022 Nov; 52(11):11453-11466. PubMed ID: 34520384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion control of musculoskeletal systems with redundancy.
    Park H; Durand DM
    Biol Cybern; 2008 Dec; 99(6):503-16. PubMed ID: 18985380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation.
    Song S; Kidziński Ł; Peng XB; Ong C; Hicks J; Levine S; Atkeson CG; Delp SL
    J Neuroeng Rehabil; 2021 Aug; 18(1):126. PubMed ID: 34399772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Critical Period for Robust Curriculum-Based Deep Reinforcement Learning of Sequential Action in a Robot Arm.
    de Kleijn R; Sen D; Kachergis G
    Top Cogn Sci; 2022 Apr; 14(2):311-326. PubMed ID: 35005844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep reinforcement learning coupled with musculoskeletal modelling for a better understanding of elderly falls.
    Nowakowski K; El Kirat K; Dao TT
    Med Biol Eng Comput; 2022 Jun; 60(6):1745-1761. PubMed ID: 35460048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient trajectory optimization for curved running using a 3D musculoskeletal model with implicit dynamics.
    Nitschke M; Dorschky E; Heinrich D; Schlarb H; Eskofier BM; Koelewijn AD; van den Bogert AJ
    Sci Rep; 2020 Oct; 10(1):17655. PubMed ID: 33077752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined Feedback Feedforward Control of a 3-Link Musculoskeletal System Based on the Iterative Training Method.
    Valizadeh A; Akbari AA
    Biomed Res Int; 2021; 2021():8701869. PubMed ID: 34790824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Rough to Precise: Human-Inspired Phased Target Learning Framework for Redundant Musculoskeletal Systems.
    Zhou J; Chen J; Deng H; Qiao H
    Front Neurorobot; 2019; 13():61. PubMed ID: 31417392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for learning human reaching movements.
    Karniel A; Inbar GF
    Biol Cybern; 1997 Sep; 77(3):173-83. PubMed ID: 9352631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotics-based synthesis of human motion.
    Khatib O; Demircan E; De Sapio V; Sentis L; Besier T; Delp S
    J Physiol Paris; 2009; 103(3-5):211-9. PubMed ID: 19665552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Optimal Adaptive-Based Neurofuzzy Control of the 3-DOF Musculoskeletal System of Human Arm in a 2D Plane.
    Valizadeh A; Akbari AA
    Appl Bionics Biomech; 2021; 2021():5514693. PubMed ID: 33880132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on deep reinforcement learning basketball robot shooting skills improvement based on end to end architecture and multi-modal perception.
    Zhang J; Tao D
    Front Neurorobot; 2023; 17():1274543. PubMed ID: 37908406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An approximate stochastic optimal control framework to simulate nonlinear neuro-musculoskeletal models in the presence of noise.
    Van Wouwe T; Ting LH; De Groote F
    PLoS Comput Biol; 2022 Jun; 18(6):e1009338. PubMed ID: 35675227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems.
    Rückert E; d'Avella A
    Front Comput Neurosci; 2013; 7():138. PubMed ID: 24146647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acquisition and extinction of operant pain-related avoidance behavior using a 3 degrees-of-freedom robotic arm.
    Meulders A; Franssen M; Fonteyne R; Vlaeyen JWS
    Pain; 2016 May; 157(5):1094-1104. PubMed ID: 26761388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement Learning-Based Reactive Obstacle Avoidance Method for Redundant Manipulators.
    Shen Y; Jia Q; Huang Z; Wang R; Fei J; Chen G
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205573
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.