These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 35951117)

  • 21. Reinforcement Learning-Based Reactive Obstacle Avoidance Method for Redundant Manipulators.
    Shen Y; Jia Q; Huang Z; Wang R; Fei J; Chen G
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In-silico neuro musculoskeletal model reproduces the movement types obtained by spinal micro stimulation.
    Kapardi M; Pithapuram MV; Rangayyan YM; Iyengar RS; Singh AK; Sripada S; Raghavan M
    Comput Methods Programs Biomed; 2022 Jun; 220():106804. PubMed ID: 35436659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects.
    Pirondini E; Coscia M; Marcheschi S; Roas G; Salsedo F; Frisoli A; Bergamasco M; Micera S
    J Neuroeng Rehabil; 2016 Jan; 13():9. PubMed ID: 26801620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-Objective Optimal Trajectory Planning for Robotic Arms Using Deep Reinforcement Learning.
    Zhang S; Xia Q; Chen M; Cheng S
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational reproductions of external force field adaption without assuming desired trajectories.
    Kambara H; Takagi A; Shimizu H; Kawase T; Yoshimura N; Schweighofer N; Koike Y
    Neural Netw; 2021 Jul; 139():179-198. PubMed ID: 33740581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A modular neural model of motor synergies.
    Byadarhaly KV; Perdoor MC; Minai AA
    Neural Netw; 2012 Aug; 32():96-108. PubMed ID: 22394689
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models.
    Katayama M; Kawato M
    Biol Cybern; 1993; 69(5-6):353-62. PubMed ID: 8274536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anthropomorphic Reaching Movement Generating Method for Human-Like Upper Limb Robot.
    He C; Xu XW; Zheng XF; Xiong CH; Li QL; Chen WB; Sun BY
    IEEE Trans Cybern; 2022 Dec; 52(12):13225-13236. PubMed ID: 34662283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Intelligent Path Planning System of Agricultural Robot via Reinforcement Learning.
    Yang J; Ni J; Li Y; Wen J; Chen D
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assist-as-needed robotic trainer based on reinforcement learning and its application to dart-throwing.
    Obayashi C; Tamei T; Shibata T
    Neural Netw; 2014 May; 53():52-60. PubMed ID: 24531040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predictive Simulation of Reaching Moving Targets Using Nonlinear Model Predictive Control.
    Mehrabi N; Sharif Razavian R; Ghannadi B; McPhee J
    Front Comput Neurosci; 2016; 10():143. PubMed ID: 28133449
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep Reinforcement Learning for Physics-Based Musculoskeletal Simulations of Healthy Subjects and Transfemoral Prostheses' Users During Normal Walking.
    De Vree L; Carloni R
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():607-618. PubMed ID: 33646954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of Upper Limb Muscle Activation Using Musculoskeletal Model with Wearable Assistive Device.
    Ashari MF; Hanafusa A; Mohamaddan S
    Appl Bionics Biomech; 2022; 2022():8908061. PubMed ID: 35847624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulating human walking: a model-based reinforcement learning approach with musculoskeletal modeling.
    Su B; Gutierrez-Farewik EM
    Front Neurorobot; 2023; 17():1244417. PubMed ID: 37901705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inertia-Constrained Reinforcement Learning to Enhance Human Motor Control Modeling.
    Korivand S; Jalili N; Gong J
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Model-Based Predictive Control and Reinforcement Learning for Planning Vehicle-Parking Trajectories for Vertical Parking Spaces.
    Shi J; Li K; Piao C; Gao J; Chen L
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic robotic tracking of underwater targets using reinforcement learning.
    Masmitja I; Martin M; O'Reilly T; Kieft B; Palomeras N; Navarro J; Katija K
    Sci Robot; 2023 Jul; 8(80):eade7811. PubMed ID: 37494462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient Actor-Critic Reinforcement Learning With Embodiment of Muscle Tone for Posture Stabilization of the Human Arm.
    Iwamoto M; Kato D
    Neural Comput; 2021 Jan; 33(1):129-156. PubMed ID: 33080164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.