These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 35951117)

  • 41. Reinforcement learning-based dynamic obstacle avoidance and integration of path planning.
    Choi J; Lee G; Lee C
    Intell Serv Robot; 2021; 14(5):663-677. PubMed ID: 34642589
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Central mechanisms for force and motion--towards computational synthesis of human movement.
    Hemami H; Dariush B
    Neural Netw; 2012 Dec; 36():167-78. PubMed ID: 23142849
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Imitation and mirror systems in robots through Deep Modality Blending Networks.
    Seker MY; Ahmetoglu A; Nagai Y; Asada M; Oztop E; Ugur E
    Neural Netw; 2022 Feb; 146():22-35. PubMed ID: 34839090
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Computational Index to Describe Slacking During Robot Therapy.
    Piovesan D
    Adv Exp Med Biol; 2016; 957():351-365. PubMed ID: 28035575
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of an optimal control model of multi-joint arm movements.
    Lan N
    Biol Cybern; 1997 Feb; 76(2):107-17. PubMed ID: 9116076
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimal control of antagonistic muscle stiffness during voluntary movements.
    Lan N; Crago PE
    Biol Cybern; 1994; 71(2):123-35. PubMed ID: 8068774
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isotropic-sequence-order learning in a closed-loop behavioural system.
    Porr B; Wörgötter F
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2225-44. PubMed ID: 14599317
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hindsight Experience Replay Improves Reinforcement Learning for Control of a MIMO Musculoskeletal Model of the Human Arm.
    Crowder DC; Abreu J; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1016-1025. PubMed ID: 33999822
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inertia-Constrained Reinforcement Learning to Enhance Human Motor Control Modeling.
    Korivand S; Jalili N; Gong J
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904901
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational Optimization of Image-Based Reinforcement Learning for Robotics.
    Ferraro S; Van de Maele T; Mazzaglia P; Verbelen T; Dhoedt B
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236477
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 52. μSim: A goal-driven framework for elucidating the neural control of movement through musculoskeletal modeling.
    Almani MN; Lazzari J; Chacon A; Saxena S
    bioRxiv; 2024 Feb; ():. PubMed ID: 38405828
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach with error-related potentials.
    Batzianoulis I; Iwane F; Wei S; Correia CGPR; Chavarriaga R; Millán JDR; Billard A
    Commun Biol; 2021 Dec; 4(1):1406. PubMed ID: 34916587
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hand trajectory invariance in reaching movements involving the trunk.
    Adamovich SV; Archambault PS; Ghafouri M; Levin MF; Poizner H; Feldman AG
    Exp Brain Res; 2001 Jun; 138(3):288-303. PubMed ID: 11460767
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.
    Davidson PR; Jones RD; Andreae JH; Sirisena HR
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1242-52. PubMed ID: 12450354
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Learning From Human Demonstrations for Wheel Mobile Manipulator: An Unscented Model Predictive Control Approach.
    Qin D; Liu A; Xu J; Zhang WA; Yu L
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):10864-10874. PubMed ID: 35560080
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization.
    Cazin N; Scleidorovich P; Weitzenfeld A; Dominey PF
    Biol Cybern; 2020 Apr; 114(2):249-268. PubMed ID: 32095878
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An adaptive reinforcement learning-based multimodal data fusion framework for human-robot confrontation gaming.
    Qi W; Fan H; Karimi HR; Su H
    Neural Netw; 2023 Jul; 164():489-496. PubMed ID: 37201309
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The spinal cord facilitates cerebellar upper limb motor learning and control; inputs from neuromusculoskeletal simulation.
    Bruel A; Abadía I; Collin T; Sakr I; Lorach H; Luque NR; Ros E; Ijspeert A
    PLoS Comput Biol; 2024 Jan; 20(1):e1011008. PubMed ID: 38166093
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Computational model of motor learning and perceptual change.
    Ito S; Darainy M; Sasaki M; Ostry DJ
    Biol Cybern; 2013 Dec; 107(6):653-67. PubMed ID: 23989535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.