These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Soliton behaviour in a bistable reaction diffusion model. Varea C; Hernández D; Barrio RA J Math Biol; 2007 Jun; 54(6):797-813. PubMed ID: 17530255 [TBL] [Abstract][Full Text] [Related]
5. Turing Pattern Formation in a Semiarid Vegetation Model with Fractional-in-Space Diffusion. Tian C Bull Math Biol; 2015 Nov; 77(11):2072-85. PubMed ID: 26511752 [TBL] [Abstract][Full Text] [Related]
6. Simple and complex spatiotemporal structures in a glycolytic allosteric enzyme model. Zhang L; Gao Q; Wang Q; Zhang X Biophys Chem; 2007 Jan; 125(1):112-6. PubMed ID: 16890343 [TBL] [Abstract][Full Text] [Related]
7. Turing instabilities in prey-predator systems with dormancy of predators. Kuwamura M J Math Biol; 2015 Jul; 71(1):125-49. PubMed ID: 25053475 [TBL] [Abstract][Full Text] [Related]
8. Large scale patterns in mussel beds: stripes or spots? Bennett JJR; Sherratt JA J Math Biol; 2019 Feb; 78(3):815-835. PubMed ID: 30187225 [TBL] [Abstract][Full Text] [Related]
10. Homoclinic snaking near a codimension-two Turing-Hopf bifurcation point in the Brusselator model. Tzou JC; Ma YP; Bayliss A; Matkowsky BJ; Volpert VA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022908. PubMed ID: 23496592 [TBL] [Abstract][Full Text] [Related]
11. A Turing-Hopf Bifurcation Scenario for Pattern Formation on Growing Domains. Castillo JA; Sánchez-Garduño F; Padilla P Bull Math Biol; 2016 Jul; 78(7):1410-49. PubMed ID: 27412157 [TBL] [Abstract][Full Text] [Related]
12. Periodic orbits in glycolytic oscillators: from elliptic orbits to relaxation oscillations. Roy T; Bhattacharjee JK; Mallik AK Eur Phys J E Soft Matter; 2011 Feb; 34(2):19. PubMed ID: 21359930 [TBL] [Abstract][Full Text] [Related]
13. Turing Instability and Colony Formation in Spatially Extended Rosenzweig-MacArthur Predator-Prey Models with Allochthonous Resources. Zhou Z; Van Gorder RA Bull Math Biol; 2019 Dec; 81(12):5009-5053. PubMed ID: 31595381 [TBL] [Abstract][Full Text] [Related]
14. Core solutions of rigidly rotating spiral waves in highly excitable media. Cai MC; Pan JT; Zhang H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022920. PubMed ID: 25353558 [TBL] [Abstract][Full Text] [Related]
15. Spatio-temporal dynamics induced by competing instabilities in two asymmetrically coupled nonlinear evolution equations. Schüler D; Alonso S; Torcini A; Bär M Chaos; 2014 Dec; 24(4):043142. PubMed ID: 25554062 [TBL] [Abstract][Full Text] [Related]
16. Pattern Formation in a Spatially Extended Model of Pacemaker Dynamics in Smooth Muscle Cells. Fatoyinbo HO; Brown RG; Simpson DJW; van Brunt B Bull Math Biol; 2022 Jul; 84(8):86. PubMed ID: 35804271 [TBL] [Abstract][Full Text] [Related]
17. The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb. Alber M; Glimm T; Hentschel HG; Kazmierczak B; Zhang YT; Zhu J; Newman SA Bull Math Biol; 2008 Feb; 70(2):460-83. PubMed ID: 17965922 [TBL] [Abstract][Full Text] [Related]
18. Noise-reversed stability of Turing patterns versus Hopf oscillations near codimension-two conditions. Alonso S; Sagués F Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):035203. PubMed ID: 19905167 [TBL] [Abstract][Full Text] [Related]
19. Pattern formation in a coupled membrane-bulk reaction-diffusion model for intracellular polarization and oscillations. Paquin-Lefebvre F; Xu B; DiPietro KL; Lindsay AE; Jilkine A J Theor Biol; 2020 Jul; 497():110242. PubMed ID: 32179107 [TBL] [Abstract][Full Text] [Related]
20. Turing-Hopf bifurcation analysis in a superdiffusive predator-prey model. Liu B; Wu R; Chen L Chaos; 2018 Nov; 28(11):113118. PubMed ID: 30501205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]