These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 35951523)
41. The Fungal and Bacterial Rhizosphere Microbiome Associated With Grapevine Rootstock Genotypes in Mature and Young Vineyards. Berlanas C; Berbegal M; Elena G; Laidani M; Cibriain JF; Sagües A; Gramaje D Front Microbiol; 2019; 10():1142. PubMed ID: 31178845 [TBL] [Abstract][Full Text] [Related]
42. Development and characterization of simple sequence repeats for Bipolaris sorokiniana and cross transferability to related species. Fajolu OL; Wadl PA; Vu AL; Gwinn KD; Scheffler BE; Trigiano RN; Ownley BH Mycologia; 2013; 105(5):1164-73. PubMed ID: 23709521 [TBL] [Abstract][Full Text] [Related]
43. Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. Gagne-Bourgue F; Aliferis KA; Seguin P; Rani M; Samson R; Jabaji S J Appl Microbiol; 2013 Mar; 114(3):836-53. PubMed ID: 23190162 [TBL] [Abstract][Full Text] [Related]
44. Candidate Variants for Additive and Interactive Effects on Bioenergy Traits in Switchgrass ( Ramstein GP; Evans J; Nandety A; Saha MC; Brummer EC; Kaeppler SM; Buell CR; Casler MD Plant Genome; 2018 Nov; 11(3):. PubMed ID: 30512032 [TBL] [Abstract][Full Text] [Related]
45. Heterologous expression of a chimeric gene, OsDST-SRDX, enhanced salt tolerance of transgenic switchgrass (Panicum virgatum L.). Cen H; Liu Y; Li D; Wang K; Zhang Y; Zhang W Plant Cell Rep; 2020 Jun; 39(6):723-736. PubMed ID: 32130473 [TBL] [Abstract][Full Text] [Related]
46. Nitrogen remobilization and conservation, and underlying senescence-associated gene expression in the perennial switchgrass Panicum virgatum. Yang J; Worley E; Ma Q; Li J; Torres-Jerez I; Li G; Zhao PX; Xu Y; Tang Y; Udvardi M New Phytol; 2016 Jul; 211(1):75-89. PubMed ID: 26935010 [TBL] [Abstract][Full Text] [Related]
47. Transcriptome-based analyses of phosphite-mediated suppression of rust pathogens Puccinia emaculata and Phakopsora pachyrhizi and functional characterization of selected fungal target genes. Gill US; Sun L; Rustgi S; Tang Y; von Wettstein D; Mysore KS Plant J; 2018 Mar; 93(5):894-904. PubMed ID: 29315949 [TBL] [Abstract][Full Text] [Related]
48. One-time nitrogen fertilization shifts switchgrass soil microbiomes within a context of larger spatial and temporal variation. Chen H; Yang ZK; Yip D; Morris RH; Lebreux SJ; Cregger MA; Klingeman DM; Hui D; Hettich RL; Wilhelm SW; Wang G; Löffler FE; Schadt CW PLoS One; 2019; 14(6):e0211310. PubMed ID: 31211785 [TBL] [Abstract][Full Text] [Related]
50. Local Plants, Not Soils, Are the Primary Source of Foliar Fungal Community Assembly in a C4 Grass. Whitaker BK; Giauque H; Timmerman C; Birk N; Hawkes CV Microb Ecol; 2022 Jul; 84(1):122-130. PubMed ID: 34405252 [TBL] [Abstract][Full Text] [Related]
51. Heterosis of leaf and rhizosphere microbiomes in field-grown maize. Wagner MR; Roberts JH; Balint-Kurti P; Holland JB New Phytol; 2020 Nov; 228(3):1055-1069. PubMed ID: 32521050 [TBL] [Abstract][Full Text] [Related]
52. Overexpression of AtLOV1 in Switchgrass alters plant architecture, lignin content, and flowering time. Xu B; Sathitsuksanoh N; Tang Y; Udvardi MK; Zhang JY; Shen Z; Balota M; Harich K; Zhang PY; Zhao B PLoS One; 2012; 7(12):e47399. PubMed ID: 23300513 [TBL] [Abstract][Full Text] [Related]
53. A forward genetics approach integrating genome-wide association study and expression quantitative trait locus mapping to dissect leaf development in maize (Zea mays). Miculan M; Nelissen H; Ben Hassen M; Marroni F; Inzé D; Pè ME; Dell'Acqua M Plant J; 2021 Aug; 107(4):1056-1071. PubMed ID: 34087008 [TBL] [Abstract][Full Text] [Related]
54. Diversity, specificity, co-occurrence and hub taxa of the bacterial-fungal pollen microbiome. Manirajan BA; Maisinger C; Ratering S; Rusch V; Schwiertz A; Cardinale M; Schnell S FEMS Microbiol Ecol; 2018 Aug; 94(8):. PubMed ID: 29878113 [TBL] [Abstract][Full Text] [Related]
55. Diversity and population structure of northern switchgrass as revealed through exome capture sequencing. Evans J; Crisovan E; Barry K; Daum C; Jenkins J; Kunde-Ramamoorthy G; Nandety A; Ngan CY; Vaillancourt B; Wei CL; Schmutz J; Kaeppler SM; Casler MD; Buell CR Plant J; 2015 Nov; 84(4):800-15. PubMed ID: 26426343 [TBL] [Abstract][Full Text] [Related]
56. Population genomic variation reveals roles of history, adaptation and ploidy in switchgrass. Grabowski PP; Morris GP; Casler MD; Borevitz JO Mol Ecol; 2014 Aug; 23(16):4059-73. PubMed ID: 24962137 [TBL] [Abstract][Full Text] [Related]
57. Natural variation in genes potentially involved in plant architecture and adaptation in switchgrass (Panicum virgatum L.). Bahri BA; Daverdin G; Xu X; Cheng JF; Barry KW; Brummer EC; Devos KM BMC Evol Biol; 2018 Jun; 18(1):91. PubMed ID: 29898656 [TBL] [Abstract][Full Text] [Related]
58. Crop, genotype, and field environmental conditions shape bacterial and fungal seed epiphytic microbiomes. Morales Moreira ZP; Helgason BL; Germida JJ Can J Microbiol; 2021 Feb; 67(2):161-173. PubMed ID: 32931717 [TBL] [Abstract][Full Text] [Related]
59. Post-glacial evolution of Panicum virgatum: centers of diversity and gene pools revealed by SSR markers and cpDNA sequences. Zhang Y; Zalapa JE; Jakubowski AR; Price DL; Acharya A; Wei Y; Brummer EC; Kaeppler SM; Casler MD Genetica; 2011 Jul; 139(7):933-48. PubMed ID: 21786028 [TBL] [Abstract][Full Text] [Related]
60. Comparative Fungal Community Analyses Using Metatranscriptomics and Internal Transcribed Spacer Amplicon Sequencing from Norway Spruce. Schneider AN; Sundh J; Sundström G; Richau K; Delhomme N; Grabherr M; Hurry V; Street NR mSystems; 2021 Feb; 6(1):. PubMed ID: 33594001 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]