These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 35951550)
41. Composite Lithium Protective Layer Formed In Situ for Stable Lithium Metal Batteries. Zhang Y; Sun C ACS Appl Mater Interfaces; 2021 Mar; 13(10):12099-12105. PubMed ID: 33653027 [TBL] [Abstract][Full Text] [Related]
42. Properties of the Interphase Formed between Argyrodite-Type Li Simon FJ; Hanauer M; Henss A; Richter FH; Janek J ACS Appl Mater Interfaces; 2019 Nov; 11(45):42186-42196. PubMed ID: 31613597 [TBL] [Abstract][Full Text] [Related]
43. In Situ Construction of a LiF-Enriched Interfacial Modification Layer for Stable All-Solid-State Batteries. Jiao T; Xia M; Chen Z; Zou Y; Liu G; Fu A; Chen L; Gong Z; Yang Y; Zheng J ACS Appl Mater Interfaces; 2022 Jul; 14(26):29878-29885. PubMed ID: 35749281 [TBL] [Abstract][Full Text] [Related]
44. A high performance lithium-ion-sulfur battery with a free-standing carbon matrix supported Li-rich alloy anode. Zhang T; Hong M; Yang J; Xu Z; Wang J; Guo Y; Liang C Chem Sci; 2018 Dec; 9(47):8829-8835. PubMed ID: 30627400 [TBL] [Abstract][Full Text] [Related]
45. Adhesive Sulfide Solid Electrolyte Interface for Lithium Metal Batteries. Jiang W; Yan L; Zeng X; Meng X; Huang R; Zhu X; Ling M; Liang C ACS Appl Mater Interfaces; 2020 Dec; 12(49):54876-54883. PubMed ID: 33236875 [TBL] [Abstract][Full Text] [Related]
46. Synergistic Evolution of Alloy Nanoparticles and Carbon in Solid-State Lithium Metal Anode Composites at Low Stack Pressure. Yoon SG; Vishnugopi BS; Alsaç EP; Jeong WJ; Sandoval SE; Nelson DL; Ayyaswamy A; Mukherjee PP; McDowell MT ACS Nano; 2024 Jul; 18(31):20792-805. PubMed ID: 39074070 [TBL] [Abstract][Full Text] [Related]
47. In Situ Constructing a Stable Solid Electrolyte Interface by Multifunctional Electrolyte Additive to Stabilize Lithium Metal Anodes for Li-S Batteries. Huang MZ; Hu T; Zhang YT; Zhang Z; Yu J; Yang ZY ACS Appl Mater Interfaces; 2022 Apr; 14(15):17959-17967. PubMed ID: 35380426 [TBL] [Abstract][Full Text] [Related]
48. Deeply Lithiated Carbonaceous Materials for Great Lithium Metal Protection in All-Solid-State Batteries. Song L; Li R; Zhu H; Li Z; Liu G; Peng Z; Fan X; Yao X Adv Mater; 2024 Jun; 36(26):e2400165. PubMed ID: 38618658 [TBL] [Abstract][Full Text] [Related]
49. Regulation of the Interfaces Between Argyrodite Solid Electrolytes and Lithium Metal Anode. Pang B; Gan Y; Xia Y; Huang H; He X; Zhang W Front Chem; 2022; 10():837978. PubMed ID: 35178377 [TBL] [Abstract][Full Text] [Related]
50. A Large-Scale Fabrication of Flexible, Ultrathin, and Robust Solid Electrolyte for Solid-State Lithium-Sulfur Batteries. Nie L; Zhu J; Wu X; Zhang M; Xiao X; Gao R; Wu X; Zhu Y; Chen S; Han Z; Yu Y; Wang S; Ling S; Zhou G Adv Mater; 2024 Jul; 36(29):e2400115. PubMed ID: 38752837 [TBL] [Abstract][Full Text] [Related]
51. Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition. Kozen AC; Lin CF; Pearse AJ; Schroeder MA; Han X; Hu L; Lee SB; Rubloff GW; Noked M ACS Nano; 2015 Jun; 9(6):5884-92. PubMed ID: 25970127 [TBL] [Abstract][Full Text] [Related]
52. Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries. Fu KK; Gong Y; Fu Z; Xie H; Yao Y; Liu B; Carter M; Wachsman E; Hu L Angew Chem Int Ed Engl; 2017 Nov; 56(47):14942-14947. PubMed ID: 28994191 [TBL] [Abstract][Full Text] [Related]
53. LiFSI and LiDFBOP Dual-Salt Electrolyte Reinforces the Solid Electrolyte Interphase on a Lithium Metal Anode. Liu S; Zhang Q; Wang X; Xu M; Li W; Lucht BL ACS Appl Mater Interfaces; 2020 Jul; 12(30):33719-33728. PubMed ID: 32608965 [TBL] [Abstract][Full Text] [Related]
54. High-Performance Composite Lithium Anodes Enabled by Electronic/Ionic Dual-Conductive Paths for Solid-State Li Metal Batteries. Yang Z; Li M; Lu G; Wang Y; Wei J; Hu X; Li Z; Li P; Xu C Small; 2022 Aug; 18(31):e2202911. PubMed ID: 35810467 [TBL] [Abstract][Full Text] [Related]
55. Self-Formed Protection Layer on a 3D Lithium Metal Anode for Ultrastable Lithium-Sulfur Batteries. Yan X; Zhang H; Huang M; Qu M; Wei Z ChemSusChem; 2019 May; 12(10):2263-2270. PubMed ID: 30802359 [TBL] [Abstract][Full Text] [Related]
56. Unveiling Solid Electrolyte Interphase Formation at the Molecular Level: Computational Insights into Bare Li-Metal Anode and Li Golov A; Carrasco J ACS Energy Lett; 2023 Oct; 8(10):4129-4135. PubMed ID: 37854046 [TBL] [Abstract][Full Text] [Related]
57. Strategic Approaches to the Dendritic Growth and Interfacial Reaction of Lithium Metal Anode. Han SA; Qutaish H; Park MS; Moon J; Kim JH Chem Asian J; 2021 Dec; 16(24):4010-4017. PubMed ID: 34709715 [TBL] [Abstract][Full Text] [Related]
58. High Rate and Stable Solid-State Lithium Metal Batteries Enabled by Electronic and Ionic Mixed Conducting Network Interlayers. Zhu Z; Lu LL; Yin Y; Shao J; Shen B; Yao HB ACS Appl Mater Interfaces; 2019 May; 11(18):16578-16585. PubMed ID: 31010282 [TBL] [Abstract][Full Text] [Related]
59. Anode Interface Engineering and Architecture Design for High-Performance Lithium-Sulfur Batteries. Zhao Y; Ye Y; Wu F; Li Y; Li L; Chen R Adv Mater; 2019 Mar; 31(12):e1806532. PubMed ID: 30672032 [TBL] [Abstract][Full Text] [Related]