These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35951574)

  • 1. Muscle-Effort-Minimization-Inspired Kinematic Redundancy Resolution for Replicating Natural Posture of Human Arm.
    Li Q; Xia Y; Wang X; Xin P; Chen W; Xiong C
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2341-2351. PubMed ID: 35951574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A behavior-based inverse kinematics algorithm to predict arm prehension postures for computer-aided ergonomic evaluation.
    Wang X
    J Biomech; 1999 May; 32(5):453-60. PubMed ID: 10326998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inter-joint coupling and joint angle synergies of human catching movements.
    Bockemühl T; Troje NF; Dürr V
    Hum Mov Sci; 2010 Feb; 29(1):73-93. PubMed ID: 19945187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional kinematic analysis of influence of hand orientation and joint limits on the control of arm postures and movements.
    Wang X
    Biol Cybern; 1999 Jun; 80(6):449-63. PubMed ID: 10420570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological Plausibility of Arm Postures Influences the Controllability of Robotic Arm Teleoperation.
    Mick S; Badets A; Oudeyer PY; Cattaert D; De Rugy A
    Hum Factors; 2022 Mar; 64(2):372-384. PubMed ID: 32809867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematics and Singularity Analysis of a 7-DOF Redundant Manipulator.
    Shi X; Guo Y; Chen X; Chen Z; Yang Z
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Tandem Robotic Arm Inverse Kinematic Solution Based on an Improved Particle Swarm Algorithm.
    Zhao G; Jiang D; Liu X; Tong X; Sun Y; Tao B; Kong J; Yun J; Liu Y; Fang Z
    Front Bioeng Biotechnol; 2022; 10():832829. PubMed ID: 35662837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of self-selected postures to regulate multi-joint stiffness during unconstrained tasks.
    Trumbower RD; Krutky MA; Yang BS; Perreault EJ
    PLoS One; 2009; 4(5):e5411. PubMed ID: 19412540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of anatomically and biomechanically feasible precision grip posture of the human hand based on minimization of muscle effort.
    Nakajima T; Asami Y; Endo Y; Tada M; Ogihara N
    Sci Rep; 2022 Aug; 12(1):13247. PubMed ID: 35918451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The rotational axis approach for resolving the kinematic redundancy of the human arm in reaching movements.
    Li Z; Roldan JR; Milutinović D; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2507-10. PubMed ID: 24110236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial Map of Synthesized Criteria for the Redundancy Resolution of Human Arm Movements.
    Li Z; Milutinovic D; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1020-30. PubMed ID: 25532187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic model for redundancy resolution of the human arm via the swivel angle: applications for upper limb exoskeleton control.
    Kim H; Roldan JR; Li Z; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6471-4. PubMed ID: 23367411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task-space separation principle: a force-field approach to motion planning for redundant manipulators.
    Tommasino P; Campolo D
    Bioinspir Biomim; 2017 Feb; 12(2):026003. PubMed ID: 28004637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robotics-based synthesis of human motion.
    Khatib O; Demircan E; De Sapio V; Sentis L; Besier T; Delp S
    J Physiol Paris; 2009; 103(3-5):211-9. PubMed ID: 19665552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of geometric joint constraints on the selection of final arm posture during reaching: a simulation study.
    Kamper DG; Zev Rymer W
    Exp Brain Res; 1999 May; 126(1):134-8. PubMed ID: 10333014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle effort is best minimized by the right-dominant arm in the gravity field.
    Poirier G; Papaxanthis C; Mourey F; Lebigre M; Gaveau J
    J Neurophysiol; 2022 Apr; 127(4):1117-1126. PubMed ID: 35353617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental observations on the human arm motion planning under an elbow joint constraint.
    Moon H; Robson NP; Langari R; Buchanan JJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3870-3. PubMed ID: 23366773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization-based differential kinematic modeling exhibits a velocity-control strategy for dynamic posture determination in seated reaching movements.
    Zhang X; Kuo AD; Chaffin DB
    J Biomech; 1998 Nov; 31(11):1035-42. PubMed ID: 9880060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.