These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35951574)

  • 21. The effect of sitting posture on the loads at cervico-thoracic and lumbosacral joints.
    Kwon Y; Kim JW; Heo JH; Jeon HM; Choi EB; Eom GM
    Technol Health Care; 2018; 26(S1):409-418. PubMed ID: 29758964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interplay of biomechanical constraints and kinematic strategies in selecting arm postures.
    States RA; Wright CE
    J Mot Behav; 2001 Jun; 33(2):165-79. PubMed ID: 11404212
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Load emphasizes muscle effort minimization during selection of arm movement direction.
    Wang W; Dounskaia N
    J Neuroeng Rehabil; 2012 Oct; 9():70. PubMed ID: 23035925
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comment: difference between assessment of upper limb movement and upper limb associated reactions during walking.
    Meyns P
    J Neuroeng Rehabil; 2021 Mar; 18(1):47. PubMed ID: 33691710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human arm posture prediction in response to isometric endpoint forces.
    Davoudabadi Farahani S; Andersen MS; de Zee M; Rasmussen J
    J Biomech; 2015 Nov; 48(15):4178-4184. PubMed ID: 26482735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategy of arm movement control is determined by minimization of neural effort for joint coordination.
    Dounskaia N; Shimansky Y
    Exp Brain Res; 2016 Jun; 234(6):1335-50. PubMed ID: 26983620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Threshold control of arm posture and movement adaptation to load.
    Foisy M; Feldman AG
    Exp Brain Res; 2006 Nov; 175(4):726-44. PubMed ID: 16847611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Postural coordination patterns associated with the swinging frequency of arms.
    Abe M; Yamada N
    Exp Brain Res; 2001 Jul; 139(1):120-5. PubMed ID: 11482839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redundancy resolution of a human arm for controlling a seven DOF wearable robotic system.
    Kim H; Miller LM; Al-Refai A; Brand M; Rosen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():3471-4. PubMed ID: 22255087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human standing posture: multi-joint movement strategies based on biomechanical constraints.
    Kuo AD; Zajac FE
    Prog Brain Res; 1993; 97():349-58. PubMed ID: 8234760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards a realistic biomechanical model of the thumb: the choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters.
    Valero-Cuevas FJ; Johanson ME; Towles JD
    J Biomech; 2003 Jul; 36(7):1019-30. PubMed ID: 12757811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Is there an optimal arm posture? Deterioration of finger localization precision and comfort sensation in extreme arm-joint postures.
    Rossetti Y; Meckler C; Prablanc C
    Exp Brain Res; 1994; 99(1):131-6. PubMed ID: 7925786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mechanics of multi-joint posture and movement control.
    Hogan N
    Biol Cybern; 1985; 52(5):315-31. PubMed ID: 4052499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From reaching to reach-to-grasp: the arm posture difference and its implications on human motion control strategy.
    Li Z; Milutinović D; Rosen J
    Exp Brain Res; 2017 May; 235(5):1627-1642. PubMed ID: 28265688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A geometry- and muscle-based control architecture for synthesising biological movement.
    Walter JR; Günther M; Haeufle DFB; Schmitt S
    Biol Cybern; 2021 Feb; 115(1):7-37. PubMed ID: 33590348
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nine Degree-of-Freedom Kinematic Modeling of the Upper-Limb Complex for Constrained Workspace Evaluation.
    DeBoon B; Foley RCA; Nokleby S; La Delfa NJ; Rossa C
    J Biomech Eng; 2021 Feb; 143(2):. PubMed ID: 32975581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrinsic joint kinematic planning. I: reassessing the Listing's law constraint in the control of three-dimensional arm movements.
    Liebermann DG; Biess A; Friedman J; Gielen CC; Flash T
    Exp Brain Res; 2006 May; 171(2):139-54. PubMed ID: 16341526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D human arm reaching movement planning with principal patterns in successive phases.
    Dehghani S; Bahrami F
    J Comput Neurosci; 2020 Aug; 48(3):265-280. PubMed ID: 32458184
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Joint contribution to fingertip movement during a number entry task: an application of Jacobian matrix.
    Qin J; Trudeau M; Buchholz B; Katz JN; Xu X; Dennerlein JT
    J Appl Biomech; 2014 Apr; 30(2):338-42. PubMed ID: 24144858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A slouched body posture decreases arm mobility and changes muscle recruitment in the neck and shoulder region.
    Malmström EM; Olsson J; Baldetorp J; Fransson PA
    Eur J Appl Physiol; 2015 Dec; 115(12):2491-503. PubMed ID: 26429723
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.