These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 35951580)

  • 1. Optimal Control of Temporal Networks With Variable Input and Node-Source Connection.
    Sun J; Hao Y; Huang J; Wen C; Li G
    IEEE Trans Cybern; 2024 Feb; 54(2):999-1010. PubMed ID: 35951580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear Quadratic Optimal Control of Time-Invariant Linear Networks With Selectable Input Matrix.
    Hao Y; Wang T; Li G; Wen C
    IEEE Trans Cybern; 2021 Sep; 51(9):4743-4754. PubMed ID: 31804949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integer optimization algorithm for robust identification of non-linear gene regulatory networks.
    Chemmangattuvalappil N; Task K; Banerjee I
    BMC Syst Biol; 2012 Sep; 6():119. PubMed ID: 22937832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Method Based on Temporal Embedding for the Pairwise Alignment of Dynamic Networks.
    Cinaglia P; Cannataro M
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General optimization framework for accurate and efficient reconstruction of symmetric complex networks from dynamical data.
    Ma C; Lai YC; Li X; Zhang HF
    Phys Rev E; 2023 Sep; 108(3-1):034304. PubMed ID: 37849195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Barrier Varying-Parameter Dynamic Learning Network for Solving Time-Varying Quadratic Programming Problems With Multiple Constraints.
    Zhang Z; Li Z; Yang S
    IEEE Trans Cybern; 2022 Sep; 52(9):8781-8792. PubMed ID: 33635808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A purely data-driven framework for prediction, optimization, and control of networked processes.
    Tavasoli A; Henry T; Shakeri H
    ISA Trans; 2023 Jul; 138():491-503. PubMed ID: 37037734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new gradient-based neural network for solving linear and quadratic programming problems.
    Leung Y; Chen KZ; Jiao YC; Gao XB; Leung KS
    IEEE Trans Neural Netw; 2001; 12(5):1074-83. PubMed ID: 18249935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local network connectivity optimization: an evaluation of heuristics applied to complex spatial networks, a transportation case study, and a spatial social network.
    Auerbach J; Kim H
    PeerJ Comput Sci; 2021; 7():e605. PubMed ID: 34239982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillation suppression and chimera states in time-varying networks.
    Majhi S; Rakshit S; Ghosh D
    Chaos; 2022 Apr; 32(4):042101. PubMed ID: 35489845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Projection Neural Network for Constrained Quadratic Minimax Optimization.
    Liu Q; Wang J
    IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2891-900. PubMed ID: 25966485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of general projection neural networks for solving monotone linear variational inequalities and linear and quadratic optimization problems.
    Hu X; Wang J
    IEEE Trans Syst Man Cybern B Cybern; 2007 Oct; 37(5):1414-21. PubMed ID: 17926722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking Control for Linear Discrete-Time Networked Control Systems With Unknown Dynamics and Dropout.
    Yi Jiang ; Jialu Fan ; Tianyou Chai ; Lewis FL; Jinna Li
    IEEE Trans Neural Netw Learn Syst; 2018 Oct; 29(10):4607-4620. PubMed ID: 29990205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal control of unknown affine nonlinear discrete-time systems using offline-trained neural networks with proof of convergence.
    Dierks T; Thumati BT; Jagannathan S
    Neural Netw; 2009; 22(5-6):851-60. PubMed ID: 19596551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstructing network topology and coupling strengths in directed networks of discrete-time dynamics.
    Lai PY
    Phys Rev E; 2017 Feb; 95(2-1):022311. PubMed ID: 28297975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic hidden-variable network models.
    Hartle H; Papadopoulos F; Krioukov D
    Phys Rev E; 2021 May; 103(5-1):052307. PubMed ID: 34134209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiresolution GPC-Structured Control of a Single-Loop Cold-Flow Chemical Looping Testbed.
    Zhang S; Bentsman J; Lou X; Neuschaefer C; Lee Y; El-Kebir H
    Energies (Basel); 2020 Apr; 13(7):. PubMed ID: 32582408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.