These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 35951606)
1. CTG-Net: Cross-task guided network for breast ultrasound diagnosis. Yang K; Suzuki A; Ye J; Nosato H; Izumori A; Sakanashi H PLoS One; 2022; 17(8):e0271106. PubMed ID: 35951606 [TBL] [Abstract][Full Text] [Related]
2. BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis. Zhang E; Seiler S; Chen M; Lu W; Gu X Phys Med Biol; 2020 Jun; 65(12):125005. PubMed ID: 32155605 [TBL] [Abstract][Full Text] [Related]
3. Breast Tumor Classification using Short-ResNet with Pixel-based Tumor Probability Map in Ultrasound Images. Wang YW; Kuo TT; Chou YH; Su Y; Huang SH; Chen CJ Ultrason Imaging; 2023 Mar; 45(2):74-84. PubMed ID: 36951105 [TBL] [Abstract][Full Text] [Related]
4. Role of inter- and extra-lesion tissue, transfer learning, and fine-tuning in the robust classification of breast lesions. Nastase IA; Moldovanu S; Biswas KC; Moraru L Sci Rep; 2024 Oct; 14(1):22754. PubMed ID: 39354128 [TBL] [Abstract][Full Text] [Related]
5. Multi-task learning for segmentation and classification of tumors in 3D automated breast ultrasound images. Zhou Y; Chen H; Li Y; Liu Q; Xu X; Wang S; Yap PT; Shen D Med Image Anal; 2021 May; 70():101918. PubMed ID: 33676100 [TBL] [Abstract][Full Text] [Related]
6. FMRNet: A fused network of multiple tumoral regions for breast tumor classification with ultrasound images. Cui W; Peng Y; Yuan G; Cao W; Cao Y; Lu Z; Ni X; Yan Z; Zheng J Med Phys; 2022 Jan; 49(1):144-157. PubMed ID: 34766623 [TBL] [Abstract][Full Text] [Related]
7. A Discriminative Level Set Method with Deep Supervision for Breast Tumor Segmentation. Hussain S; Xi X; Ullah I; Inam SA; Naz F; Shaheed K; Ali SA; Tian C Comput Biol Med; 2022 Oct; 149():105995. PubMed ID: 36055157 [TBL] [Abstract][Full Text] [Related]
8. Breast ultrasound image segmentation: A coarse-to-fine fusion convolutional neural network. Wang K; Liang S; Zhong S; Feng Q; Ning Z; Zhang Y Med Phys; 2021 Aug; 48(8):4262-4278. PubMed ID: 34053092 [TBL] [Abstract][Full Text] [Related]
9. C-Net: Cascaded convolutional neural network with global guidance and refinement residuals for breast ultrasound images segmentation. Chen G; Dai Y; Zhang J Comput Methods Programs Biomed; 2022 Oct; 225():107086. PubMed ID: 36044802 [TBL] [Abstract][Full Text] [Related]
10. Saliency map-guided hierarchical dense feature aggregation framework for breast lesion classification using ultrasound image. Di X; Zhong S; Zhang Y Comput Methods Programs Biomed; 2022 Mar; 215():106612. PubMed ID: 35033757 [TBL] [Abstract][Full Text] [Related]
11. SHA-MTL: soft and hard attention multi-task learning for automated breast cancer ultrasound image segmentation and classification. Zhang G; Zhao K; Hong Y; Qiu X; Zhang K; Wei B Int J Comput Assist Radiol Surg; 2021 Oct; 16(10):1719-1725. PubMed ID: 34254225 [TBL] [Abstract][Full Text] [Related]
12. SMU-Net: Saliency-Guided Morphology-Aware U-Net for Breast Lesion Segmentation in Ultrasound Image. Ning Z; Zhong S; Feng Q; Chen W; Zhang Y IEEE Trans Med Imaging; 2022 Feb; 41(2):476-490. PubMed ID: 34582349 [TBL] [Abstract][Full Text] [Related]
13. Multi-task learning for segmentation and classification of breast tumors from ultrasound images. He Q; Yang Q; Su H; Wang Y Comput Biol Med; 2024 May; 173():108319. PubMed ID: 38513394 [TBL] [Abstract][Full Text] [Related]
14. A deep learning-based method for the detection and segmentation of breast masses in ultrasound images. Li W; Ye X; Chen X; Jiang X; Yang Y Phys Med Biol; 2024 Jul; 69(15):. PubMed ID: 38986480 [No Abstract] [Full Text] [Related]
15. A Multi-Task Learning Framework for Automated Segmentation and Classification of Breast Tumors From Ultrasound Images. Chowdary J; Yogarajah P; Chaurasia P; Guruviah V Ultrason Imaging; 2022 Jan; 44(1):3-12. PubMed ID: 35128997 [TBL] [Abstract][Full Text] [Related]
16. CAM-QUS guided self-tuning modular CNNs with multi-loss functions for fully automated breast lesion classification in ultrasound images. Tasnim J; Hasan MK Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38056017 [No Abstract] [Full Text] [Related]
17. Accurate segmentation of breast tumor in ultrasound images through joint training and refined segmentation. Shen X; Wu X; Liu R; Li H; Yin J; Wang L; Ma H Phys Med Biol; 2022 Sep; 67(17):. PubMed ID: 35961304 [No Abstract] [Full Text] [Related]
18. Global guidance network for breast lesion segmentation in ultrasound images. Xue C; Zhu L; Fu H; Hu X; Li X; Zhang H; Heng PA Med Image Anal; 2021 May; 70():101989. PubMed ID: 33640719 [TBL] [Abstract][Full Text] [Related]
19. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network. Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805 [TBL] [Abstract][Full Text] [Related]
20. Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model. Hu Y; Guo Y; Wang Y; Yu J; Li J; Zhou S; Chang C Med Phys; 2019 Jan; 46(1):215-228. PubMed ID: 30374980 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]