These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 35952366)
1. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Energy Harvesting: Roles of Nanochannel Geometry and Bipolar Soft Layer. Dartoomi H; Khatibi M; Ashrafizadeh SN Langmuir; 2022 Aug; 38(33):10313-10330. PubMed ID: 35952366 [TBL] [Abstract][Full Text] [Related]
2. Layer-by-Layer Nanofluidic Membranes for Promoting Blue Energy Conversion. Khatibi M; Dartoomi H; Ashrafizadeh SN Langmuir; 2023 Sep; 39(38):13717-13734. PubMed ID: 37702658 [TBL] [Abstract][Full Text] [Related]
3. Quantitative model for predicting the electroosmotic flow in dual-pole nanochannels. Khosravikia M Electrophoresis; 2023 Apr; 44(7-8):733-743. PubMed ID: 36808619 [TBL] [Abstract][Full Text] [Related]
4. In-depth understanding of boosting salinity gradient power generation by ionic diode. Peng R; Li T; Song H; Wang S; Song Y; Wang J; Xu M iScience; 2023 Jul; 26(7):107184. PubMed ID: 37534140 [TBL] [Abstract][Full Text] [Related]
6. Bio-Inspired Salinity-Gradient Power Generation With UiO-66-NH Yao L; Li Q; Pan S; Cheng J; Liu X Front Bioeng Biotechnol; 2022; 10():901507. PubMed ID: 35528210 [TBL] [Abstract][Full Text] [Related]
7. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis. Wang S; Sun Z; Ahmad M; Fu W; Gao Z Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325 [TBL] [Abstract][Full Text] [Related]
8. Advances in Two-Dimensional Ion-Selective Membranes: Bridging Nanoscale Insights to Industrial-Scale Salinity Gradient Energy Harvesting. Ma X; Neek-Amal M; Sun C ACS Nano; 2024 May; 18(20):12610-12638. PubMed ID: 38733357 [TBL] [Abstract][Full Text] [Related]
9. Advanced integrated nanochannel membrane with oppositely-charged bacterial cellulose and functionalized polymer for efficient salinity gradient energy generation. Li Z; Mehraj A; Sun Z; Fu W; Wang S Int J Biol Macromol; 2024 Oct; 277(Pt 1):133975. PubMed ID: 39029819 [TBL] [Abstract][Full Text] [Related]
10. Gap Confinement Effect of a Tandem Nanochannel System and Its Application in Salinity Gradient Power Generation. Wang Y; Chen H; Zhai J ACS Appl Mater Interfaces; 2021 Sep; 13(34):41159-41168. PubMed ID: 34403239 [TBL] [Abstract][Full Text] [Related]
11. Tripling the reverse electrodialysis power generation in conical nanochannels utilizing soft surfaces. Khatibi M; Sadeghi A; Ashrafizadeh SN Phys Chem Chem Phys; 2021 Jan; 23(3):2211-2221. PubMed ID: 33439162 [TBL] [Abstract][Full Text] [Related]
12. Miniaturized Salinity Gradient Energy Harvesting Devices. Hsu WS; Preet A; Lin TY; Lin TE Molecules; 2021 Sep; 26(18):. PubMed ID: 34576940 [TBL] [Abstract][Full Text] [Related]
13. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting. Tong X; Liu S; Crittenden J; Chen Y ACS Nano; 2021 Apr; 15(4):5838-5860. PubMed ID: 33844502 [TBL] [Abstract][Full Text] [Related]
14. Horizontally Asymmetric Nanochannels of Graphene Oxide Membranes for Efficient Osmotic Energy Harvesting. Bang KR; Kwon C; Lee H; Kim S; Cho ES ACS Nano; 2023 Jun; 17(11):10000-10009. PubMed ID: 37196224 [TBL] [Abstract][Full Text] [Related]
15. Smart nanochannels: tailoring ion transport properties through variation in nanochannel geometry. Heydari A; Khatibi M; Ashrafizadeh SN Phys Chem Chem Phys; 2023 Oct; 25(39):26716-26736. PubMed ID: 37779455 [TBL] [Abstract][Full Text] [Related]
16. High-Performance Osmotic Power Generators Based on the 1D/2D Hybrid Nanochannel System. Dong Y; Zhao Z; Zhao J; Guo Z; Du G; Sun Y; He D; Duan J; Liu J; Yao H ACS Appl Mater Interfaces; 2022 Jun; 14(25):29197-29212. PubMed ID: 35704847 [TBL] [Abstract][Full Text] [Related]
17. Nanofluidic crystal: a facile, high-efficiency and high-power-density scaling up scheme for energy harvesting based on nanofluidic reverse electrodialysis. Ouyang W; Wang W; Zhang H; Wu W; Li Z Nanotechnology; 2013 Aug; 24(34):345401. PubMed ID: 23899953 [TBL] [Abstract][Full Text] [Related]
18. Highly Efficient Conversion of Salinity Difference to Electricity in Nanofluidic Channels Boosted by Variable Thickness Polyelectrolyte Coating. Nekoubin N; Sadeghi A; Chakraborty S Langmuir; 2024 May; 40(19):10171-10183. PubMed ID: 38698764 [TBL] [Abstract][Full Text] [Related]
19. Blue energy generation by the temperature-dependent properties in funnel-shaped soft nanochannels. Karimzadeh M; Khatibi M; Ashrafizadeh SN; Mondal PK Phys Chem Chem Phys; 2022 Aug; 24(34):20303-20317. PubMed ID: 35979759 [TBL] [Abstract][Full Text] [Related]
20. Salinity gradient power: influences of temperature and nanopore size. Tseng S; Li YM; Lin CY; Hsu JP Nanoscale; 2016 Jan; 8(4):2350-7. PubMed ID: 26752789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]