These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1130 related articles for article (PubMed ID: 35952419)
1. Transformer-based unsupervised contrastive learning for histopathological image classification. Wang X; Yang S; Zhang J; Wang M; Zhang J; Yang W; Huang J; Han X Med Image Anal; 2022 Oct; 81():102559. PubMed ID: 35952419 [TBL] [Abstract][Full Text] [Related]
2. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation. Chaitanya K; Erdil E; Karani N; Konukoglu E Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649 [TBL] [Abstract][Full Text] [Related]
3. Self-supervised driven consistency training for annotation efficient histopathology image analysis. Srinidhi CL; Kim SW; Chen FD; Martel AL Med Image Anal; 2022 Jan; 75():102256. PubMed ID: 34717189 [TBL] [Abstract][Full Text] [Related]
4. CS-CO: A Hybrid Self-Supervised Visual Representation Learning Method for H&E-stained Histopathological Images. Yang P; Yin X; Lu H; Hu Z; Zhang X; Jiang R; Lv H Med Image Anal; 2022 Oct; 81():102539. PubMed ID: 35926337 [TBL] [Abstract][Full Text] [Related]
5. MaskMitosis: a deep learning framework for fully supervised, weakly supervised, and unsupervised mitosis detection in histopathology images. Sebai M; Wang X; Wang T Med Biol Eng Comput; 2020 Jul; 58(7):1603-1623. PubMed ID: 32445109 [TBL] [Abstract][Full Text] [Related]
6. Reducing annotation burden in MR: A novel MR-contrast guided contrastive learning approach for image segmentation. Umapathy L; Brown T; Mushtaq R; Greenhill M; Lu J; Martin D; Altbach M; Bilgin A Med Phys; 2024 Apr; 51(4):2707-2720. PubMed ID: 37956263 [TBL] [Abstract][Full Text] [Related]
7. Pyramid-based self-supervised learning for histopathological image classification. Wang J; Quan H; Wang C; Yang G Comput Biol Med; 2023 Oct; 165():107336. PubMed ID: 37708715 [TBL] [Abstract][Full Text] [Related]
8. A modality-collaborative convolution and transformer hybrid network for unpaired multi-modal medical image segmentation with limited annotations. Liu H; Zhuang Y; Song E; Xu X; Ma G; Cetinkaya C; Hung CC Med Phys; 2023 Sep; 50(9):5460-5478. PubMed ID: 36864700 [TBL] [Abstract][Full Text] [Related]
9. MSCT-UNET: multi-scale contrastive transformer within U-shaped network for medical image segmentation. Xi H; Dong H; Sheng Y; Cui H; Huang C; Li J; Zhu J Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38061069 [No Abstract] [Full Text] [Related]
10. Contrastive Semi-Supervised Learning for Domain Adaptive Segmentation Across Similar Anatomical Structures. Gu R; Zhang J; Wang G; Lei W; Song T; Zhang X; Li K; Zhang S IEEE Trans Med Imaging; 2023 Jan; 42(1):245-256. PubMed ID: 36155435 [TBL] [Abstract][Full Text] [Related]
11. Seeking an optimal approach for Computer-aided Diagnosis of Pulmonary Embolism. Islam NU; Zhou Z; Gehlot S; Gotway MB; Liang J Med Image Anal; 2024 Jan; 91():102988. PubMed ID: 37924750 [TBL] [Abstract][Full Text] [Related]
12. Masked autoencoders with handcrafted feature predictions: Transformer for weakly supervised esophageal cancer classification. Bai Y; Li W; An J; Xia L; Chen H; Zhao G; Gao Z Comput Methods Programs Biomed; 2024 Feb; 244():107936. PubMed ID: 38016392 [TBL] [Abstract][Full Text] [Related]
13. Swin MoCo: Improving parotid gland MRI segmentation using contrastive learning. Xu Z; Dai Y; Liu F; Wu B; Chen W; Shi L Med Phys; 2024 Aug; 51(8):5295-5307. PubMed ID: 38749016 [TBL] [Abstract][Full Text] [Related]
14. Enhancing diagnostic deep learning via self-supervised pretraining on large-scale, unlabeled non-medical images. Tayebi Arasteh S; Misera L; Kather JN; Truhn D; Nebelung S Eur Radiol Exp; 2024 Feb; 8(1):10. PubMed ID: 38326501 [TBL] [Abstract][Full Text] [Related]
15. Uni4Eye++: A General Masked Image Modeling Multi-modal Pre-training Framework for Ophthalmic Image Classification and Segmentation. Cai Z; Lin L; He H; Cheng P; Tang X IEEE Trans Med Imaging; 2024 Jul; PP():. PubMed ID: 38954581 [TBL] [Abstract][Full Text] [Related]
16. Cluster-based histopathology phenotype representation learning by self-supervised multi-class-token hierarchical ViT. Ye J; Kalra S; Miri MS Sci Rep; 2024 Feb; 14(1):3202. PubMed ID: 38331955 [TBL] [Abstract][Full Text] [Related]
18. Wearable Data From Subjects Playing Super Mario, Taking University Exams, or Performing Physical Exercise Help Detect Acute Mood Disorder Episodes via Self-Supervised Learning: Prospective, Exploratory, Observational Study. Corponi F; Li BM; Anmella G; Valenzuela-Pascual C; Mas A; Pacchiarotti I; Valentí M; Grande I; Benabarre A; Garriga M; Vieta E; Young AH; Lawrie SM; Whalley HC; Hidalgo-Mazzei D; Vergari A JMIR Mhealth Uhealth; 2024 Jul; 12():e55094. PubMed ID: 39018100 [TBL] [Abstract][Full Text] [Related]
19. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification. Marini N; Otálora S; Müller H; Atzori M Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169 [TBL] [Abstract][Full Text] [Related]
20. Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification. Otálora S; Marini N; Müller H; Atzori M BMC Med Imaging; 2021 May; 21(1):77. PubMed ID: 33964886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]