These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35952571)

  • 1. Comparison of blood flow between two mechanical compression devices using ultrasound: Animal trial.
    Ryu JH; Min MK; Lee DS; Lee MJ; Chun MS; Hyun T; Shon SW
    Am J Emerg Med; 2022 Oct; 60():116-120. PubMed ID: 35952571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doppler ultrasound peak systolic velocity versus end tidal carbon dioxide during pulse checks in cardiac arrest.
    Haddad G; Margius D; Cohen AL; Gorlin M; Jafari D; Li T; Owens C; Becker L; Rolston DM
    Resuscitation; 2023 Feb; 183():109695. PubMed ID: 36646373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation of thrust, depth and the impedance cardiogram as measures of cardiopulmonary resuscitation efficacy in a porcine model of cardiac arrest.
    Howe A; O'Hare P; Crawford P; Delafont B; McAlister O; Di Maio R; Clutton E; Adgey J; McEneaney D
    Resuscitation; 2015 Nov; 96():114-20. PubMed ID: 26234892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standardized post-resuscitation damage assessment of two mechanical chest compression devices: a prospective randomized large animal trial.
    Ruemmler R; Stein J; Duenges B; Renz M; Hartmann EK
    Scand J Trauma Resusc Emerg Med; 2021 Jun; 29(1):79. PubMed ID: 34090500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compression depth of 30 mm has similar efficacy and fewer complications versus 50 mm during mechanical chest compression with miniaturized chest compressor in a porcine model of cardiac arrest.
    Liang L; Li Z; Chen R; Liu S; Zhou T; Jiang L; Tang W; Jiang J; Yang Z
    J Thorac Dis; 2021 Oct; 13(10):5788-5798. PubMed ID: 34795927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Feasible study of carotid artery Doppler ultrasound blood flow measurement during chest compression cardiopulmonary resuscitation].
    Wang H; Zhang S; Gao B
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2019 Mar; 31(3):309-312. PubMed ID: 30914091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A remote-controlled automatic chest compression device capable of moving compression position during CPR: A pilot study in a mannequin and a swine model of cardiac arrest.
    Suh GJ; Kim T; Kim KS; Kwon WY; Kim H; Park H; Wang G; Park J; Hur S; Sim J; Kim K; Lee JC; Shin DA; Cho WS; Kim BJ; Kwon S; Lee YJ
    PLoS One; 2024; 19(1):e0297057. PubMed ID: 38241416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pilot study of mechanical chest compressions with the LUCAS™ device in cardiopulmonary resuscitation.
    Smekal D; Johansson J; Huzevka T; Rubertsson S
    Resuscitation; 2011 Jun; 82(6):702-6. PubMed ID: 21419560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy of chest compressions directed by end-tidal CO2 feedback in a pediatric resuscitation model of basic life support.
    Hamrick JL; Hamrick JT; Lee JK; Lee BH; Koehler RC; Shaffner DH
    J Am Heart Assoc; 2014 Apr; 3(2):e000450. PubMed ID: 24732917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of carotid doppler ultrasonography and capnography in evaluating the efficacy of CPR.
    Yilmaz G; Silcan M; Serin S; Caglar B; Erarslan Ö; Parlak İ
    Am J Emerg Med; 2018 Sep; 36(9):1545-1549. PubMed ID: 29321118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The role of pulse oximetry plethysmographic waveform monitoring as a marker of restoration of spontaneous circulation:a pilot study].
    Li C; Xu J; Han F; Zheng L; Fu Y; Yao D; Zhang X; Zhu H; Guo S; Yu X
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2015 Mar; 27(3):203-8. PubMed ID: 25757970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [An experimental study on the effects of rhythmic abdominal lifting and compression during cardiopulmonary resuscitation in a swine model of asphyxia].
    Li XM; Wang LX; Liu YH; Sun K; Ma LZ; Guo XD; Li HQ
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2012 Apr; 24(4):237-40. PubMed ID: 22464579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Miniaturized mechanical chest compressor improves calculated cerebral perfusion pressure without compromising intracranial pressure during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Xu J; Hu X; Yang Z; Wu X; Bisera J; Sun S; Tang W
    Resuscitation; 2014 May; 85(5):683-8. PubMed ID: 24463224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between end-tidal carbon dioxide and the degree of compression of heart cavities measured by transthoracic echocardiography during cardiopulmonary resuscitation for out-of-hospital cardiac arrest.
    Skulec R; Vojtisek P; Cerny V
    Crit Care; 2019 Oct; 23(1):334. PubMed ID: 31665061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association between Prehospital CPR Quality and End-Tidal Carbon Dioxide Levels in Out-of-Hospital Cardiac Arrest.
    Murphy RA; Bobrow BJ; Spaite DW; Hu C; McDannold R; Vadeboncoeur TF
    Prehosp Emerg Care; 2016; 20(3):369-77. PubMed ID: 26830353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Left ventricle chest compression improves ETCO
    Marshall RA; Morton JS; Luchkanych AMS; El Karsh Y; El Karsh Z; Morse C; Tomczak CR; Grunau BE; Olver TD
    Resusc Plus; 2022 Dec; 12():100326. PubMed ID: 36407570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utility of CPR Machine Power and Change in Right Atrial Pressure for Estimating CPR Quality.
    Lee DY; Kang SM; Choi SW
    Sci Rep; 2019 Jun; 9(1):9250. PubMed ID: 31239492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing a kinematic understanding of chest compressions: the impact of depth and release time on blood flow during cardiopulmonary resuscitation.
    Lampe JW; Tai Y; Bratinov G; Weiland TR; Kaufman CL; Berg RA; Becker LB
    Biomed Eng Online; 2015 Nov; 14():102. PubMed ID: 26537881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of an end-tidal carbon dioxide-guided algorithm during cardiopulmonary resuscitation improves short-term survival in paediatric swine.
    O'Brien CE; Santos PT; Kulikowicz E; Adams S; Lee JK; Hunt EA; Koehler RC; Shaffner DH
    Resusc Plus; 2021 Dec; 8():100174. PubMed ID: 34820656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arterial pressure, end-tidal carbon dioxide, and central venous oxygen saturation in reflecting compression depth.
    Ryu SJ; Lee SJ; Park CH; Lee SM; Lee DH; Cho YS; Jung YH; Lee BK; Jeung KW
    Acta Anaesthesiol Scand; 2016 Aug; 60(7):1012-23. PubMed ID: 27080141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.