BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35952588)

  • 1. Detection of microplastics based on spatial heterodyne Raman spectroscopy.
    Xue Q; Wang N; Yang H; Yang J; Bai H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 283():121712. PubMed ID: 35952588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of microplastics based on splicing grating spatial heterodyne Raman spectroscopy.
    Yang H; Xue Q; Lu F; Ma J; Dong Y; Yu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 318():124499. PubMed ID: 38788505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ELM combined with differential Raman spectroscopy for the detection of microplastics in organisms.
    Xue Q; Dong Y; Lu F; Yang H; Yu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 312():124039. PubMed ID: 38364450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and analysis of microplastics in offshore sediment by microscopic differential Raman spectroscopy.
    Dong Y; Xue Q; Lu F; Wang F; Li Q
    Appl Opt; 2022 Dec; 61(34):10188-10196. PubMed ID: 36606780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization and characterisation of microplastics in aquatic environment using a home-built micro-Raman spectroscopic set up.
    Sunil M; N M; Charles M; Chidangil S; Kumar S; Lukose J
    J Environ Manage; 2024 Mar; 354():120351. PubMed ID: 38382433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects.
    Araujo CF; Nolasco MM; Ribeiro AMP; Ribeiro-Claro PJA
    Water Res; 2018 Oct; 142():426-440. PubMed ID: 29909221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of microplastics via a confocal-microscope spatial-heterodyne Raman spectrometer with echelle gratings.
    Li F; Song N; Li X; Jirigalantu ; Mi X; Sun C; Sun Y; Feng S; Wang G; Qiu J; Bayanheshig
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 313():124099. PubMed ID: 38513421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevalence of small-sized microplastics in coastal sediments detected by multipoint confocal micro-Raman spectrum scanning.
    Liu D; Zheng Y; Chen L; Wen D
    Sci Total Environ; 2022 Jul; 831():154741. PubMed ID: 35339562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and identification of microplastics using Raman spectroscopy coupled with multivariate analysis.
    Jin N; Song Y; Ma R; Li J; Li G; Zhang D
    Anal Chim Acta; 2022 Mar; 1197():339519. PubMed ID: 35168726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a confocal micro-Raman spectroscopy system and research on microplastics detection.
    Lu J; Xue Q; Bai H; Wang N
    Appl Opt; 2021 Sep; 60(27):8375-8383. PubMed ID: 34612936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nile red staining in microplastic analysis-proposal for a reliable and fast identification approach for large microplastics.
    Hengstmann E; Fischer EK
    Environ Monit Assess; 2019 Sep; 191(10):612. PubMed ID: 31489505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alcohol Pretreatment to Eliminate the Interference of Micro Additive Particles in the Identification of Microplastics Using Raman Spectroscopy.
    Li D; Sheerin ED; Shi Y; Xiao L; Yang L; Boland JJ; Wang JJ
    Environ Sci Technol; 2022 Sep; 56(17):12158-12168. PubMed ID: 36006854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of automated microplastic identification workflow for Raman micro-imaging and evaluation of the uncertainties during micro-imaging.
    Yang Z; Nagashima H; Arakawa H
    Mar Pollut Bull; 2023 Aug; 193():115200. PubMed ID: 37364340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Monolithic Spatial Heterodyne Raman Spectrometer: Initial Tests.
    Waldron A; Allen A; Colón A; Carter JC; Angel SM
    Appl Spectrosc; 2021 Jan; 75(1):57-69. PubMed ID: 32495633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of household microplastics using a multi-model approach based on Raman spectroscopy.
    Feng Z; Zheng L; Liu J
    Chemosphere; 2023 Jun; 325():138312. PubMed ID: 36907487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical photothermal infrared spectroscopy with simultaneously acquired Raman spectroscopy for two-dimensional microplastic identification.
    Böke JS; Popp J; Krafft C
    Sci Rep; 2022 Nov; 12(1):18785. PubMed ID: 36335148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman Spectroscopy for the Analysis of Microplastics in Aquatic Systems.
    Nava V; Frezzotti ML; Leoni B
    Appl Spectrosc; 2021 Nov; 75(11):1341-1357. PubMed ID: 34541936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical detection of microplastics in water.
    Iri AH; Shahrah MHA; Ali AM; Qadri SA; Erdem T; Ozdur IT; Icoz K
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63860-63866. PubMed ID: 33462694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A double sliding-window method for baseline correction and noise estimation for Raman spectra of microplastics.
    Yang Z; Arakawa H
    Mar Pollut Bull; 2023 May; 190():114887. PubMed ID: 37023548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of spectroscopic analysis methods for microplastics: Manual, semi-automated, and automated Fourier transform infrared and Raman techniques.
    Song YK; Hong SH; Eo S; Shim WJ
    Mar Pollut Bull; 2021 Dec; 173(Pt B):113101. PubMed ID: 34743073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.