These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 35952624)
1. A 2D Nanoradiosensitizer Enhances Radiotherapy and Delivers STING Agonists to Potentiate Cancer Immunotherapy. Luo T; Nash GT; Jiang X; Feng X; Mao J; Liu J; Juloori A; Pearson AT; Lin W Adv Mater; 2022 Sep; 34(39):e2110588. PubMed ID: 35952624 [TBL] [Abstract][Full Text] [Related]
2. Nanoparticle delivery improves the pharmacokinetic properties of cyclic dinucleotide STING agonists to open a therapeutic window for intravenous administration. Wehbe M; Wang-Bishop L; Becker KW; Shae D; Baljon JJ; He X; Christov P; Boyd KL; Balko JM; Wilson JT J Control Release; 2021 Feb; 330():1118-1129. PubMed ID: 33189789 [TBL] [Abstract][Full Text] [Related]
3. Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma. Wang-Bishop L; Wehbe M; Shae D; James J; Hacker BC; Garland K; Chistov PP; Rafat M; Balko JM; Wilson JT J Immunother Cancer; 2020 Mar; 8(1):. PubMed ID: 32169869 [TBL] [Abstract][Full Text] [Related]
4. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Shae D; Becker KW; Christov P; Yun DS; Lytton-Jean AKR; Sevimli S; Ascano M; Kelley M; Johnson DB; Balko JM; Wilson JT Nat Nanotechnol; 2019 Mar; 14(3):269-278. PubMed ID: 30664751 [TBL] [Abstract][Full Text] [Related]
5. Bifunctional Metal-Organic Framework Synergistically Enhances Radiotherapy and Activates STING for Potent Cancer Radio-Immunotherapy. Wang C; Li J; Jiang X; Ma X; Zhen W; Tillman L; Weichselbaum RR; Lin W Angew Chem Int Ed Engl; 2024 Oct; ():e202417027. PubMed ID: 39375150 [TBL] [Abstract][Full Text] [Related]
6. Engineering and Delivery of cGAS-STING Immunomodulators for the Immunotherapy of Cancer and Autoimmune Diseases. Zhou S; Cheng F; Zhang Y; Su T; Zhu G Acc Chem Res; 2023 Nov; 56(21):2933-2943. PubMed ID: 37802125 [TBL] [Abstract][Full Text] [Related]
7. Single-Dose Physically Cross-Linked Hyaluronic Acid and Lipid Hybrid Nanoparticles Containing Cyclic Guanosine Monophosphate-Adenosine Monophosphate Eliminate Established Tumors. Yu J; Li X; Li J; Sun N; Cheng P; Huang J; Li S; Kuai R ACS Nano; 2024 Oct; 18(43):29942-29955. PubMed ID: 39418110 [TBL] [Abstract][Full Text] [Related]
9. STING agonist-conjugated metal-organic framework induces artificial leukocytoid structures and immune hotspots for systemic antitumor responses. Luo T; Jiang X; Fan Y; Yuan E; Li J; Tillman L; Lin W Natl Sci Rev; 2024 Jul; 11(7):nwae167. PubMed ID: 38887543 [TBL] [Abstract][Full Text] [Related]
10. The cyclic guanosine monophosphate synthase-stimulator of interferon genes pathway as a potential target for tumor immunotherapy. Chen R; Liu M; Jiang Q; Meng X; Wei J Front Immunol; 2023; 14():1121603. PubMed ID: 37153627 [TBL] [Abstract][Full Text] [Related]
11. Lanthanide-Nucleotide Coordination Nanoparticles for STING Activation. Luo Z; Liang X; He T; Qin X; Li X; Li Y; Li L; Loh XJ; Gong C; Liu X J Am Chem Soc; 2022 Sep; 144(36):16366-16377. PubMed ID: 36037283 [TBL] [Abstract][Full Text] [Related]
12. The Development of STING Agonists and Emerging Results as a Cancer Immunotherapy. Hines JB; Kacew AJ; Sweis RF Curr Oncol Rep; 2023 Mar; 25(3):189-199. PubMed ID: 36705879 [TBL] [Abstract][Full Text] [Related]
13. Targeting STING for cancer immunotherapy: From mechanisms to translation. Huang R; Ning Q; Zhao J; Zhao X; Zeng L; Yi Y; Tang S Int Immunopharmacol; 2022 Dec; 113(Pt A):109304. PubMed ID: 36252492 [TBL] [Abstract][Full Text] [Related]
14. Microparticle Delivery of a STING Agonist Enables Indirect Activation of NK Cells by Antigen-Presenting Cells. Watkins-Schulz R; Batty CJ; Stiepel RT; Schmidt ME; Sandor AM; Chou WC; Ainslie KM; Bachelder EM; Ting JP Mol Pharm; 2022 Sep; 19(9):3125-3138. PubMed ID: 35913984 [TBL] [Abstract][Full Text] [Related]
15. STING pathway as a cancer immunotherapy: Progress and challenges in activating anti-tumor immunity. Tabar MMM; Fathi M; Kazemi F; Bazregari G; Ghasemian A Mol Biol Rep; 2024 Apr; 51(1):487. PubMed ID: 38578532 [TBL] [Abstract][Full Text] [Related]
16. STING activation in cancer immunotherapy. Su T; Zhang Y; Valerie K; Wang XY; Lin S; Zhu G Theranostics; 2019; 9(25):7759-7771. PubMed ID: 31695799 [TBL] [Abstract][Full Text] [Related]
17. The lipid platform increases the activity of STING agonists to synergize checkpoint blockade therapy against melanoma. Li K; Ye Y; Liu L; Sha Q; Wang X; Jiao T; Zhang L; Wang J Biomater Sci; 2021 Feb; 9(3):765-773. PubMed ID: 33201161 [TBL] [Abstract][Full Text] [Related]
18. piSTING: A Pocket-Independent Agonist Based on Multivalency-Driven STING Oligomerization. Zhuo SH; Wang TY; Zhao L; Su JY; Hu JJ; Zhao YF; Li YM Angew Chem Int Ed Engl; 2024 Sep; 63(38):e202407037. PubMed ID: 38767062 [TBL] [Abstract][Full Text] [Related]
19. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. Cheng N; Watkins-Schulz R; Junkins RD; David CN; Johnson BM; Montgomery SA; Peine KJ; Darr DB; Yuan H; McKinnon KP; Liu Q; Miao L; Huang L; Bachelder EM; Ainslie KM; Ting JP JCI Insight; 2018 Nov; 3(22):. PubMed ID: 30429378 [TBL] [Abstract][Full Text] [Related]
20. A polymeric nanoplatform enhances the cGAS-STING pathway in macrophages to potentiate phagocytosis for cancer immunotherapy. Li Y; Yi J; Ma R; Wang Y; Lou X; Dong Y; Cao Y; Li X; Wang M; Dang X; Li R; Lei N; Song H; Qin Z; Yang W J Control Release; 2024 Sep; 373():447-462. PubMed ID: 39038546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]