These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35952711)

  • 1. 3D Printing Flexible Sodium-Ion Microbatteries with Ultrahigh Areal Capacity and Robust Rate Capability.
    Ma J; Zheng S; Chi L; Liu Y; Zhang Y; Wang K; Wu ZS
    Adv Mater; 2022 Sep; 34(39):e2205569. PubMed ID: 35952711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Layer Printable Lithium Ion Micro-Batteries with Remarkable Areal Energy Density and Flexibility for Wearable Smart Electronics.
    Zhang Y; Zheng S; Zhou F; Shi X; Dong C; Das P; Ma J; Wang K; Wu ZS
    Small; 2022 Feb; 18(5):e2104506. PubMed ID: 34837671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing of Customized Li-Ion Batteries with Thick Electrodes.
    Wei TS; Ahn BY; Grotto J; Lewis JA
    Adv Mater; 2018 Apr; 30(16):e1703027. PubMed ID: 29543991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Printed microelectrodes for scalable, high-areal-capacity lithium-sulfur batteries.
    Milroy C; Manthiram A
    Chem Commun (Camb); 2016 Mar; 52(23):4282-5. PubMed ID: 26833188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multitasking MXene Inks Enable High-Performance Printable Microelectrochemical Energy Storage Devices for All-Flexible Self-Powered Integrated Systems.
    Zheng S; Wang H; Das P; Zhang Y; Cao Y; Ma J; Liu SF; Wu ZS
    Adv Mater; 2021 Mar; 33(10):e2005449. PubMed ID: 33522037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printing of fast kinetics reconciled ultra-thick cathodes for high areal energy density aqueous Li-Zn hybrid battery.
    He H; Luo D; Zeng L; He J; Li X; Yu H; Zhang C
    Sci Bull (Beijing); 2022 Jun; 67(12):1253-1263. PubMed ID: 36546155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printing flexible zinc-ion microbatteries with ultrahigh areal capacity and energy density for wearable electronics.
    Yan W; Cai X; Tan F; Liang J; Zhao J; Tan C
    Chem Commun (Camb); 2023 Feb; 59(12):1661-1664. PubMed ID: 36688849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-Printed 3D Solid-State Rechargeable Zinc-Air Microbatteries.
    Liu G; Ma Z; Li G; Yu W; Wang P; Meng C; Guo S
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13073-13085. PubMed ID: 36866775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Flexible, Conductive, and Recyclable Ti
    Shi H; Yue M; Zhang CJ; Dong Y; Lu P; Zheng S; Huang H; Chen J; Wen P; Xu Z; Zheng Q; Li X; Yu Y; Wu ZS
    ACS Nano; 2020 Jul; 14(7):8678-8688. PubMed ID: 32530269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional printed lithium iron phosphate coated with magnesium oxide cathode with improved areal capacity and ultralong cycling stability for high performance lithium-ion batteries.
    Pierre Mwizerwa J; Liu C; Xu K; Zhao N; Li Y; Chen Z; Shen J
    J Colloid Interface Sci; 2022 Oct; 623():168-181. PubMed ID: 35576648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template synthesis of SnO2/α-Fe2O3 nanotube array for 3D lithium ion battery anode with large areal capacity.
    Zeng W; Zheng F; Li R; Zhan Y; Li Y; Liu J
    Nanoscale; 2012 Apr; 4(8):2760-5. PubMed ID: 22422051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D-Printed Proton Pseudocapacitor with Ultrahigh Mass Loading and Areal Energy Density for Fast Energy Storage at Low Temperature.
    Zhang M; Xu T; Wang D; Yao T; Xu Z; Liu Q; Shen L; Yu Y
    Adv Mater; 2023 Jun; 35(23):e2209963. PubMed ID: 36626913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance Packaged 3D Lithium-Ion Microbatteries Fabricated Using Imprint Lithography.
    Sun P; Li X; Shao J; Braun PV
    Adv Mater; 2021 Jan; 33(1):e2006229. PubMed ID: 33241634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrahigh-Areal-Capacity Battery Anodes Enabled by Free-Standing Vanadium Nitride@N-Doped Carbon/Graphene Architecture.
    Li C; Zhu L; Qi S; Ge W; Ma W; Zhao Y; Huang R; Xu L; Qian Y
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49607-49616. PubMed ID: 33104326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion Synthesis of Self-Standing Potassium Zinc Hexacyanoferrate Arrays as Cathodes for High-Voltage Flexible Aqueous Rechargeable Sodium-Ion Batteries.
    He B; Man P; Zhang Q; Wang C; Zhou Z; Li C; Wei L; Yao Y
    Small; 2019 Dec; 15(52):e1905115. PubMed ID: 31769612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring Pore Structures of 3D Printed Cellular High-Loading Cathodes for Advanced Rechargeable Zinc-Ion Batteries.
    Ma H; Tian X; Wang T; Tang K; Liu Z; Hou S; Jin H; Cao G
    Small; 2021 Jul; 17(29):e2100746. PubMed ID: 34142434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning the Mechanical and Electrical Properties of Porous Electrodes for Architecting 3D Microsupercapacitors with Batteries-Level Energy.
    Li C; Li X; Yang Q; Sun P; Wu L; Nie B; Tian H; Wang Y; Wang C; Chen X; Shao J
    Adv Sci (Weinh); 2021 Aug; 8(15):e2004957. PubMed ID: 34151539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertical Graphene Film Enables High-Performance Quasi-Solid-State Planar Zinc-Ion Microbatteries.
    Zhou Y; Li W; Xie Y; Deng L; Ke B; Jian Y; Cheng S; Qu B; Wang X
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36753313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Flexible Film with SnS
    Sang Z; Yan X; Su D; Ji H; Wang S; Dou SX; Liang J
    Small; 2020 Jun; 16(25):e2001265. PubMed ID: 32431059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-Printed Zn-Ion Hybrid Capacitor Enabled by Universal Divalent Cation-Gelated Additive-Free Ti
    Fan Z; Jin J; Li C; Cai J; Wei C; Shao Y; Zou G; Sun J
    ACS Nano; 2021 Feb; 15(2):3098-3107. PubMed ID: 33576601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.