BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

852 related articles for article (PubMed ID: 35952740)

  • 1. Nanomaterial-based electrochemical enzymatic biosensors for recognizing phenolic compounds in aqueous effluents.
    Zhang J; Lei J; Liu Z; Chu Z; Jin W
    Environ Res; 2022 Nov; 214(Pt 3):113858. PubMed ID: 35952740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical performance of functional nanostructured biointerfaces for sensing phenolic compounds.
    Bensana A; Achi F
    Colloids Surf B Biointerfaces; 2020 Dec; 196():111344. PubMed ID: 32877829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immobilization strategies to develop enzymatic biosensors.
    Sassolas A; Blum LJ; Leca-Bouvier BD
    Biotechnol Adv; 2012; 30(3):489-511. PubMed ID: 21951558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review.
    Putzbach W; Ronkainen NJ
    Sensors (Basel); 2013 Apr; 13(4):4811-40. PubMed ID: 23580051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules.
    Nemiwal M; Zhang TC; Kumar D
    Enzyme Microb Technol; 2022 May; 156():110006. PubMed ID: 35144119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZnO-based amperometric enzyme biosensors.
    Zhao Z; Lei W; Zhang X; Wang B; Jiang H
    Sensors (Basel); 2010; 10(2):1216-31. PubMed ID: 22205864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme-Graphene Platforms for Electrochemical Biosensor Design With Biomedical Applications.
    Fritea L; Tertis M; Sandulescu R; Cristea C
    Methods Enzymol; 2018; 609():293-333. PubMed ID: 30244795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress of Enzymatic and Non-Enzymatic Electrochemical Glucose Biosensor Based on Nanomaterial-Modified Electrode.
    Mohamad Nor N; Ridhuan NS; Abdul Razak K
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications.
    Kurbanoglu S; Ozkan SA; Merkoçi A
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):886-898. PubMed ID: 27818056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors.
    Zhou M; Dong S
    Acc Chem Res; 2011 Nov; 44(11):1232-43. PubMed ID: 21812435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors.
    Jia X; Dong S; Wang E
    Biosens Bioelectron; 2016 Feb; 76():80-90. PubMed ID: 26001888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Prospects of Carbonaceous Nanomaterials-Based Laccase Biosensor for Electrochemical Detection of Phenolic Compounds.
    Verma S; Thakur D; Pandey CM; Kumar D
    Biosensors (Basel); 2023 Feb; 13(3):. PubMed ID: 36979517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Biosensors for the Detection of Antibiotics in Milk: Recent Trends and Future Perspectives.
    Singh B; Bhat A; Dutta L; Pati KR; Korpan Y; Dahiya I
    Biosensors (Basel); 2023 Sep; 13(9):. PubMed ID: 37754101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laccase and Tyrosinase Biosensors Used in the Determination of Hydroxycinnamic Acids.
    Bounegru AV; Apetrei C
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34062799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Progress on Nanomaterial-Facilitated Electrochemical Strategies for Cancer Diagnosis.
    Yuan X; Lin B; Liu T; Zhang W; Chu Z; Gu X; Ma Z; Jin W
    Adv Healthc Mater; 2023 Jun; 12(16):e2203029. PubMed ID: 36738113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials.
    Song Y; Luo Y; Zhu C; Li H; Du D; Lin Y
    Biosens Bioelectron; 2016 Feb; 76():195-212. PubMed ID: 26187396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in Graphene- and Related Carbon-Nanomaterial-based Electrochemical Biosensors for Early Disease Detection.
    Fahmy HM; Abu Serea ES; Salah-Eldin RE; Al-Hafiry SA; Ali MK; Shalan AE; Lanceros-Méndez S
    ACS Biomater Sci Eng; 2022 Mar; 8(3):964-1000. PubMed ID: 35229605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol.
    Wu L; Lu X; Dhanjai ; Wu ZS; Dong Y; Wang X; Zheng S; Chen J
    Biosens Bioelectron; 2018 Jun; 107():69-75. PubMed ID: 29448223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of electrochemical biosensors based on 2D materials and their hybrid composites in hematological malignancies diagnosis.
    Sun C; Huang H; Wang J; Liu W; Yang Z; Yu XF
    Technol Cancer Res Treat; 2022; 21():15330338221142996. PubMed ID: 36567603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wearable Bioelectronics: Enzyme-Based Body-Worn Electronic Devices.
    Kim J; Jeerapan I; Sempionatto JR; Barfidokht A; Mishra RK; Campbell AS; Hubble LJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2820-2828. PubMed ID: 30398344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.