These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35952752)

  • 41. Removal of hexavalent chromium from aqueous solution by different surface-modified biochars: Acid washing, nanoscale zero-valent iron and ferric iron loading.
    Zhu Y; Li H; Zhang G; Meng F; Li L; Wu S
    Bioresour Technol; 2018 Aug; 261():142-150. PubMed ID: 29656227
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The novel PEI-modified biochars and their application for the efficient elimination of Cr(VI) from aqueous solutions.
    Lv Z; Yang S; Liu Y; Zhou J; Xing L; Chen L
    Water Sci Technol; 2018 May; 77(7-8):2045-2056. PubMed ID: 29722690
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of ultraviolet-modified biochar from different feedstocks for enhanced removal of hexavalent chromium from water.
    Peng Z; Liu X; Chen H; Liu Q; Tang J
    Water Sci Technol; 2019 May; 79(9):1705-1716. PubMed ID: 31241476
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bioenergetics of aerobic and anaerobic growth of
    Wray AC; Gorman-Lewis D
    Front Microbiol; 2023; 14():1234598. PubMed ID: 37601367
    [No Abstract]   [Full Text] [Related]  

  • 45. High-Efficiency Removal of Cr(VI) from Wastewater by Mg-Loaded Biochars: Adsorption Process and Removal Mechanism.
    Li A; Deng H; Jiang Y; Ye C
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093263
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ball milling biochar iron oxide composites for the removal of chromium (Cr(VI)) from water: Performance and mechanisms.
    Zou H; Zhao J; He F; Zhong Z; Huang J; Zheng Y; Zhang Y; Yang Y; Yu F; Bashir MA; Gao B
    J Hazard Mater; 2021 Jul; 413():125252. PubMed ID: 33578092
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioreduction of nitrobenzene, natural organic matter, and hematite by Shewanella putrefaciens CN32.
    Luan F; Burgos WD; Xie L; Zhou Q
    Environ Sci Technol; 2010 Jan; 44(1):184-90. PubMed ID: 19957913
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Removal performance and mechanisms of Cr(VI) by an in-situ self-improvement of mesoporous biochar derived from chicken bone.
    Yang T; Han C; Tang J; Luo Y
    Environ Sci Pollut Res Int; 2020 Feb; 27(5):5018-5029. PubMed ID: 31848961
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pyrolysis-temperature depended electron donating and mediating mechanisms of biochar for Cr(VI) reduction.
    Xu Z; Xu X; Zhang Y; Yu Y; Cao X
    J Hazard Mater; 2020 Apr; 388():121794. PubMed ID: 31813692
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biochar conductivity and electron donating capability control Cr(VI) bioreduction.
    Zhang P; Zhu B; Li S; Du W; Peng H; Liu B; Wang Z
    Chemosphere; 2023 Aug; 333():138950. PubMed ID: 37196795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of biochar@α-Fe
    Zou D; Tong J; Feng C; Wang Y; Li X; Zheng X; Wang X; Liu Y
    Chemosphere; 2022 Sep; 303(Pt 2):134858. PubMed ID: 35533938
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Removal of hexavalent chromium via biochar-based adsorbents: State-of-the-art, challenges, and future perspectives.
    Sinha R; Kumar R; Sharma P; Kant N; Shang J; Aminabhavi TM
    J Environ Manage; 2022 Sep; 317():115356. PubMed ID: 35623129
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32.
    Huo YC; Li WW; Chen CB; Li CX; Zeng R; Lau TC; Huang TY
    Enzyme Microb Technol; 2016 Dec; 95():236-241. PubMed ID: 27866621
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pyrolyzed fabrication of N/P co-doped biochars from (NH
    Li J; He F; Shen X; Hu D; Huang Q
    Bioresour Technol; 2020 Nov; 315():123840. PubMed ID: 32693347
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly efficient removal of Cr(VI) and Cu(II) by biochar derived from Artemisia argyi stem.
    Song J; He Q; Hu X; Zhang W; Wang C; Chen R; Wang H; Mosa A
    Environ Sci Pollut Res Int; 2019 May; 26(13):13221-13234. PubMed ID: 30903476
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Removal of heavy metals from aqueous solution using chitosan-combined magnetic biochars.
    Xiao F; Cheng J; Cao W; Yang C; Chen J; Luo Z
    J Colloid Interface Sci; 2019 Mar; 540():579-584. PubMed ID: 30677611
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biochar-driven reduction of As(V) and Cr(VI): Effects of pyrolysis temperature and low-molecular-weight organic acids.
    Qin J; Li Q; Liu Y; Niu A; Lin C
    Ecotoxicol Environ Saf; 2020 Sep; 201():110873. PubMed ID: 32544750
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Iron-modified biochar-based bilayer permeable reactive barrier for Cr(VI) removal.
    Zhou Z; Liu P; Wang S; Finfrock YZ; Ye Z; Feng Y; Li X
    J Hazard Mater; 2022 Oct; 439():129636. PubMed ID: 35908398
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Simultaneous reduction of Cr(VI) and oxidization of organic pollutants by rice husk derived biochar and the interactive influences of coexisting Cr(VI).
    Zhang K; Khan A; Sun P; Zhang Y; Taraqqi-A-Kamal A; Zhang Y
    Sci Total Environ; 2020 Mar; 706():135763. PubMed ID: 31841843
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly efficient removal of Cr(VI) from aqueous solution by pinecone biochar supported nanoscale zero-valent iron coupling with Shewanella oneidensis MR-1.
    Ma L; Du Y; Chen S; Du D; Ye H; Zhang TC
    Chemosphere; 2022 Jan; 287(Pt 2):132184. PubMed ID: 34507148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.