These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 35952830)
1. Transcytosis-enabled active extravasation of tumor nanomedicine. Zhou Q; Li J; Xiang J; Shao S; Zhou Z; Tang J; Shen Y Adv Drug Deliv Rev; 2022 Oct; 189():114480. PubMed ID: 35952830 [TBL] [Abstract][Full Text] [Related]
2. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Zhou Q; Dong C; Fan W; Jiang H; Xiang J; Qiu N; Piao Y; Xie T; Luo Y; Li Z; Liu F; Shen Y Biomaterials; 2020 May; 240():119902. PubMed ID: 32105817 [TBL] [Abstract][Full Text] [Related]
3. Transcytosis-Inducing Multifunctional Albumin Nanomedicines with Deep Penetration Ability for Image-Guided Solid Tumor Treatment. Lee H; Park B; Lee J; Kang Y; Han M; Lee J; Kim C; Kim WJ Small; 2023 Dec; 19(50):e2303668. PubMed ID: 37612796 [TBL] [Abstract][Full Text] [Related]
4. What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right. Sun D; Zhou S; Gao W ACS Nano; 2020 Oct; 14(10):12281-12290. PubMed ID: 33021091 [TBL] [Abstract][Full Text] [Related]
5. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation. Luan X; Yuan H; Song Y; Hu H; Wen B; He M; Zhang H; Li Y; Li F; Shu P; Burnett JP; Truchan N; Palmisano M; Pai MP; Zhou S; Gao W; Sun D Biomaterials; 2021 Aug; 275():120910. PubMed ID: 34144373 [TBL] [Abstract][Full Text] [Related]
6. The tumor EPR effect for cancer drug delivery: Current status, limitations, and alternatives. Sun R; Xiang J; Zhou Q; Piao Y; Tang J; Shao S; Zhou Z; Bae YH; Shen Y Adv Drug Deliv Rev; 2022 Dec; 191():114614. PubMed ID: 36347432 [TBL] [Abstract][Full Text] [Related]
7. An EPR-Independent extravasation Strategy: Deformable leukocytes as vehicles for improved solid tumor therapy. Wu H; Li W; Hao M; Wang Y; Xue L; Ju C; Zhang C Adv Drug Deliv Rev; 2022 Aug; 187():114380. PubMed ID: 35662610 [TBL] [Abstract][Full Text] [Related]
8. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. Greish K J Drug Target; 2007; 15(7-8):457-64. PubMed ID: 17671892 [TBL] [Abstract][Full Text] [Related]
9. Unraveling the role of Intralipid in suppressing off-target delivery and augmenting the therapeutic effects of anticancer nanomedicines. Islam R; Gao S; Islam W; Ĺ ubr V; Zhou JR; Yokomizo K; Etrych T; Maeda H; Fang J Acta Biomater; 2021 May; 126():372-383. PubMed ID: 33774199 [TBL] [Abstract][Full Text] [Related]
10. Platinum-based combination nanomedicines for cancer therapy. Li Y; Lin W Curr Opin Chem Biol; 2023 Jun; 74():102290. PubMed ID: 36989943 [TBL] [Abstract][Full Text] [Related]
11. Fine-tuning of liposome integrity for differentiated transcytosis and enhanced antitumor efficacy. Su J; Wu C; Zou J; Wang X; Yang K; Liu J; Wu Z; Zhang W J Control Release; 2024 Aug; 372():69-84. PubMed ID: 38866244 [TBL] [Abstract][Full Text] [Related]
12. A Retrospective 30 Years After Discovery of the Enhanced Permeability and Retention Effect of Solid Tumors: Next-Generation Chemotherapeutics and Photodynamic Therapy--Problems, Solutions, and Prospects. Maeda H; Tsukigawa K; Fang J Microcirculation; 2016 Apr; 23(3):173-82. PubMed ID: 26237291 [TBL] [Abstract][Full Text] [Related]
13. Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR effect. Liu Z; Zhang Y; Shen N; Sun J; Tang Z; Chen X Adv Drug Deliv Rev; 2022 Apr; 183():114138. PubMed ID: 35143895 [TBL] [Abstract][Full Text] [Related]
14. Transcytosis of Nanomedicine for Tumor Penetration. Liu Y; Huo Y; Yao L; Xu Y; Meng F; Li H; Sun K; Zhou G; Kohane DS; Tao K Nano Lett; 2019 Nov; 19(11):8010-8020. PubMed ID: 31639306 [TBL] [Abstract][Full Text] [Related]
15. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? Danhier F J Control Release; 2016 Dec; 244(Pt A):108-121. PubMed ID: 27871992 [TBL] [Abstract][Full Text] [Related]
16. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation. Ikeda-Imafuku M; Wang LL; Rodrigues D; Shaha S; Zhao Z; Mitragotri S J Control Release; 2022 May; 345():512-536. PubMed ID: 35337939 [TBL] [Abstract][Full Text] [Related]
17. Navigations of the targeting pathway of nanomedicines toward tumor. Tao Y; Lan X; Zhang Y; Qing G; Wang J; Xiao Y; Chen H; Liu L; Liang XJ; Guo W Expert Opin Drug Deliv; 2022 Aug; 19(8):985-996. PubMed ID: 35929954 [TBL] [Abstract][Full Text] [Related]
18. Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors. Kim J; Cho H; Lim DK; Joo MK; Kim K Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373227 [TBL] [Abstract][Full Text] [Related]
19. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Fang J; Islam W; Maeda H Adv Drug Deliv Rev; 2020; 157():142-160. PubMed ID: 32553783 [TBL] [Abstract][Full Text] [Related]
20. Polysaccharide-based nanocarriers for efficient transvascular drug delivery. Zhang M; Ma H; Wang X; Yu B; Cong H; Shen Y J Control Release; 2023 Feb; 354():167-187. PubMed ID: 36581260 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]