These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35952875)

  • 1. The Efficient and Practical virus Identification System with ENhanced Sensitivity for Solids (EPISENS-S): A rapid and cost-effective SARS-CoV-2 RNA detection method for routine wastewater surveillance.
    Ando H; Iwamoto R; Kobayashi H; Okabe S; Kitajima M
    Sci Total Environ; 2022 Oct; 843():157101. PubMed ID: 35952875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of SARS-CoV-2 RNA in wastewater and evaluation of sampling frequency during the downward period of a COVID-19 wave in Japan.
    Kuroita T; Yoshimura A; Iwamoto R; Ando H; Okabe S; Kitajima M
    Sci Total Environ; 2024 Jan; 906():166526. PubMed ID: 37647962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. COPMAN: A novel high-throughput and highly sensitive method to detect viral nucleic acids including SARS-CoV-2 RNA in wastewater.
    Adachi Katayama Y; Hayase S; Ando Y; Kuroita T; Okada K; Iwamoto R; Yanagimoto T; Kitajima M; Masago Y
    Sci Total Environ; 2023 Jan; 856(Pt 1):158966. PubMed ID: 36162583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wastewater-based prediction of COVID-19 cases using a highly sensitive SARS-CoV-2 RNA detection method combined with mathematical modeling.
    Ando H; Murakami M; Ahmed W; Iwamoto R; Okabe S; Kitajima M
    Environ Int; 2023 Mar; 173():107743. PubMed ID: 36867995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of five polyethylene glycol precipitation procedures for the RT-qPCR based recovery of murine hepatitis virus, bacteriophage phi6, and pepper mild mottle virus as a surrogate for SARS-CoV-2 from wastewater.
    Torii S; Oishi W; Zhu Y; Thakali O; Malla B; Yu Z; Zhao B; Arakawa C; Kitajima M; Hata A; Ihara M; Kyuwa S; Sano D; Haramoto E; Katayama H
    Sci Total Environ; 2022 Feb; 807(Pt 2):150722. PubMed ID: 34610400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near full-automation of COPMAN using a LabDroid enables high-throughput and sensitive detection of SARS-CoV-2 RNA in wastewater as a leading indicator.
    Hayase S; Katayama YA; Hatta T; Iwamoto R; Kuroita T; Ando Y; Okuda T; Kitajima M; Natsume T; Masago Y
    Sci Total Environ; 2023 Jul; 881():163454. PubMed ID: 37061063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surveillance of SARS-CoV-2 in wastewater by quantitative PCR and digital PCR: a case study in Shijiazhuang city, Hebei province, China.
    Chai X; Liu S; Liu C; Bai J; Meng J; Tian H; Han X; Han G; Xu X; Li Q
    Emerg Microbes Infect; 2024 Dec; 13(1):2324502. PubMed ID: 38465692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of catchment population size, data normalization, and chronology of public health interventions on wastewater-based COVID-19 viral trends.
    Islam G; Gedge A; Ibrahim R; de Melo T; Lara-Jacobo L; Dlugosz T; Kirkwood AE; Simmons D; Desaulniers JP
    Sci Total Environ; 2024 Aug; 937():173272. PubMed ID: 38763190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond COVID-19: Wastewater-based epidemiology for multipathogen surveillance and normalization strategies.
    Malla B; Shrestha S; Sthapit N; Hirai S; Raya S; Rahmani AF; Angga MS; Siri Y; Ruti AA; Haramoto E
    Sci Total Environ; 2024 Oct; 946():174419. PubMed ID: 38960169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pasteurization, storage conditions and viral concentration methods influence RT-qPCR detection of SARS-CoV-2 RNA in wastewater.
    Islam G; Gedge A; Lara-Jacobo L; Kirkwood A; Simmons D; Desaulniers JP
    Sci Total Environ; 2022 May; 821():153228. PubMed ID: 35090920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental Surveillance of SARS-CoV-2 RNA in Wastewater and Groundwater in Quintana Roo, Mexico.
    Rosiles-González G; Carrillo-Jovel VH; Alzate-Gaviria L; Betancourt WQ; Gerba CP; Moreno-Valenzuela OA; Tapia-Tussell R; Hernández-Zepeda C
    Food Environ Virol; 2021 Dec; 13(4):457-469. PubMed ID: 34415553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of coagulation on SARS-CoV-2 and PMMoV viral signal in wastewater solids.
    Hegazy N; Tian X; D'Aoust PM; Pisharody L; Towhid ST; Mercier É; Zhang Z; Wan S; Thakali O; Kabir MP; Fang W; Nguyen TB; Ramsay NT; MacKenzie AE; Graber TE; Guilherme S; Delatolla R
    Environ Sci Pollut Res Int; 2024 Jan; 31(4):5242-5253. PubMed ID: 38112868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence.
    D'Aoust PM; Mercier E; Montpetit D; Jia JJ; Alexandrov I; Neault N; Baig AT; Mayne J; Zhang X; Alain T; Langlois MA; Servos MR; MacKenzie M; Figeys D; MacKenzie AE; Graber TE; Delatolla R
    Water Res; 2021 Jan; 188():116560. PubMed ID: 33137526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validating and optimizing the method for molecular detection and quantification of SARS-CoV-2 in wastewater.
    Qiu Y; Yu J; Pabbaraju K; Lee BE; Gao T; Ashbolt NJ; Hrudey SE; Diggle M; Tipples G; Maal-Bared R; Pang X
    Sci Total Environ; 2022 Mar; 812():151434. PubMed ID: 34742974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Different Reverse Transcriptase-Polymerase Chain Reaction-Based Methods for Wastewater Surveillance of SARS-CoV-2: Exploratory Study.
    Länsivaara A; Lehto KM; Hyder R; Janhonen ES; Lipponen A; Heikinheimo A; Pitkänen T; Oikarinen S;
    JMIR Public Health Surveill; 2024 Aug; 10():e53175. PubMed ID: 39158943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A direct capture method for purification and detection of viral nucleic acid enables epidemiological surveillance of SARS-CoV-2.
    Mondal S; Feirer N; Brockman M; Preston MA; Teter SJ; Ma D; Goueli SA; Moorji S; Saul B; Cali JJ
    Sci Total Environ; 2021 Nov; 795():148834. PubMed ID: 34252764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a magnetic nanoparticle-based method for concentrating SARS-CoV-2 in wastewater.
    Angga MS; Malla B; Raya S; Kitano A; Xie X; Saitoh H; Ohnishi N; Haramoto E
    Sci Total Environ; 2022 Nov; 848():157613. PubMed ID: 35901898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of colorimetric RT-LAMP for screening of SARS-CoV-2 in untreated wastewater.
    Akter J; Smith WJM; Gebrewold M; Kim I; Simpson SL; Bivins A; Ahmed W
    Sci Total Environ; 2024 Jan; 907():167964. PubMed ID: 37865239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring of SARS-CoV-2 concentration and circulation of variants of concern in wastewater of Leuven, Belgium.
    Rector A; Bloemen M; Thijssen M; Delang L; Raymenants J; Thibaut J; Pussig B; Fondu L; Aertgeerts B; Van Ranst M; Van Geet C; Arnout J; Wollants E
    J Med Virol; 2023 Feb; 95(2):e28587. PubMed ID: 36799251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The detectability and removal efficiency of SARS-CoV-2 in a large-scale septic tank of a COVID-19 quarantine facility in Japan.
    Iwamoto R; Yamaguchi K; Arakawa C; Ando H; Haramoto E; Setsukinai KI; Katayama K; Yamagishi T; Sorano S; Murakami M; Kyuwa S; Kobayashi H; Okabe S; Imoto S; Kitajima M
    Sci Total Environ; 2022 Nov; 849():157869. PubMed ID: 35944642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.