These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 35952897)
1. Automatic Detection of Periapical Osteolytic Lesions on Cone-beam Computed Tomography Using Deep Convolutional Neuronal Networks. Kirnbauer B; Hadzic A; Jakse N; Bischof H; Stern D J Endod; 2022 Nov; 48(11):1434-1440. PubMed ID: 35952897 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Orhan K; Bayrakdar IS; Ezhov M; Kravtsov A; Özyürek T Int Endod J; 2020 May; 53(5):680-689. PubMed ID: 31922612 [TBL] [Abstract][Full Text] [Related]
3. Automated detection and labelling of teeth and small edentulous regions on cone-beam computed tomography using convolutional neural networks. Gerhardt MDN; Fontenele RC; Leite AF; Lahoud P; Van Gerven A; Willems H; Smolders A; Beznik T; Jacobs R J Dent; 2022 Jul; 122():104139. PubMed ID: 35461974 [TBL] [Abstract][Full Text] [Related]
4. Artificial Intelligence for the Computer-aided Detection of Periapical Lesions in Cone-beam Computed Tomographic Images. Setzer FC; Shi KJ; Zhang Z; Yan H; Yoon H; Mupparapu M; Li J J Endod; 2020 Jul; 46(7):987-993. PubMed ID: 32402466 [TBL] [Abstract][Full Text] [Related]
5. Clinically Oriented CBCT Periapical Lesion Evaluation via 3D CNN Algorithm. Fu WT; Zhu QK; Li N; Wang YQ; Deng SL; Chen HP; Shen J; Meng LY; Bian Z J Dent Res; 2024 Jan; 103(1):5-12. PubMed ID: 37968798 [TBL] [Abstract][Full Text] [Related]
6. Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography. Verhelst PJ; Smolders A; Beznik T; Meewis J; Vandemeulebroucke A; Shaheen E; Van Gerven A; Willems H; Politis C; Jacobs R J Dent; 2021 Nov; 114():103786. PubMed ID: 34425172 [TBL] [Abstract][Full Text] [Related]
7. Leveraging Pretrained Transformers for Efficient Segmentation and Lesion Detection in Cone-Beam Computed Tomography Scans. Chen RQ; Lee Y; Yan H; Mupparapu M; Lure F; Li J; Setzer FC J Endod; 2024 Oct; 50(10):1505-1514.e1. PubMed ID: 39097163 [TBL] [Abstract][Full Text] [Related]
8. Influence of dental fillings and tooth type on the performance of a novel artificial intelligence-driven tool for automatic tooth segmentation on CBCT images - A validation study. Fontenele RC; Gerhardt MDN; Pinto JC; Van Gerven A; Willems H; Jacobs R; Freitas DQ J Dent; 2022 Apr; 119():104069. PubMed ID: 35183696 [TBL] [Abstract][Full Text] [Related]
9. Multiclass CBCT Image Segmentation for Orthodontics with Deep Learning. Wang H; Minnema J; Batenburg KJ; Forouzanfar T; Hu FJ; Wu G J Dent Res; 2021 Aug; 100(9):943-949. PubMed ID: 33783247 [TBL] [Abstract][Full Text] [Related]
10. Deep convolutional neural network-based automated segmentation and classification of teeth with orthodontic brackets on cone-beam computed-tomographic images: a validation study. Ayidh Alqahtani K; Jacobs R; Smolders A; Van Gerven A; Willems H; Shujaat S; Shaheen E Eur J Orthod; 2023 Mar; 45(2):169-174. PubMed ID: 36099419 [TBL] [Abstract][Full Text] [Related]
11. A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study. Shaheen E; Leite A; Alqahtani KA; Smolders A; Van Gerven A; Willems H; Jacobs R J Dent; 2021 Dec; 115():103865. PubMed ID: 34710545 [TBL] [Abstract][Full Text] [Related]
12. Detection and measurement of artificial periapical lesions by cone-beam computed tomography. Liang YH; Jiang L; Gao XJ; Shemesh H; Wesselink PR; Wu MK Int Endod J; 2014 Apr; 47(4):332-8. PubMed ID: 23815501 [TBL] [Abstract][Full Text] [Related]
13. Artificial intelligence vs. semi-automated segmentation for assessment of dental periapical lesion volume index score: A cone-beam CT study. Boubaris M; Cameron A; Manakil J; George R Comput Biol Med; 2024 Jun; 175():108527. PubMed ID: 38714047 [TBL] [Abstract][Full Text] [Related]
14. Automatic tooth roots segmentation of cone beam computed tomography image sequences using U-net and RNN. Li Q; Chen K; Han L; Zhuang Y; Li J; Lin J J Xray Sci Technol; 2020; 28(5):905-922. PubMed ID: 32986647 [TBL] [Abstract][Full Text] [Related]
15. Artificial Intelligence for Fast and Accurate 3-Dimensional Tooth Segmentation on Cone-beam Computed Tomography. Lahoud P; EzEldeen M; Beznik T; Willems H; Leite A; Van Gerven A; Jacobs R J Endod; 2021 May; 47(5):827-835. PubMed ID: 33434565 [TBL] [Abstract][Full Text] [Related]
16. The detection of periapical pathosis using digital periapical radiography and cone beam computed tomography - part 2: a 1-year post-treatment follow-up. Patel S; Wilson R; Dawood A; Foschi F; Mannocci F Int Endod J; 2012 Aug; 45(8):711-23. PubMed ID: 22775142 [TBL] [Abstract][Full Text] [Related]
17. Diagnostic accuracy of small volume cone beam computed tomography and intraoral periapical radiography for the detection of simulated external inflammatory root resorption. Durack C; Patel S; Davies J; Wilson R; Mannocci F Int Endod J; 2011 Feb; 44(2):136-47. PubMed ID: 21083575 [TBL] [Abstract][Full Text] [Related]
18. Ability of Cone-beam Computed Tomography to Detect Periapical Lesions That Were Not Detected by Periapical Radiography: A Retrospective Assessment According to Tooth Group. Uraba S; Ebihara A; Komatsu K; Ohbayashi N; Okiji T J Endod; 2016 Aug; 42(8):1186-90. PubMed ID: 27372162 [TBL] [Abstract][Full Text] [Related]