These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35952989)

  • 1. The cyanobactericidal bacterium Paucibacter aquatile DH15 caused the decline of Microcystis and aquatic microbial community succession: A mesocosm study.
    Le VV; Ko SR; Kang M; Park CY; Lee SA; Oh HM; Ahn CY
    Environ Pollut; 2022 Oct; 311():119849. PubMed ID: 35952989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic Insights into
    Le VV; Ko SR; Oh HM; Ahn CY
    J Microbiol Biotechnol; 2023 Dec; 33(12):1615-1624. PubMed ID: 37811910
    [No Abstract]   [Full Text] [Related]  

  • 3. Algicide capacity of Paucibacter aquatile DH15 on Microcystis aeruginosa by attachment and non-attachment effects.
    Le VV; Ko SR; Kang M; Lee SA; Oh HM; Ahn CY
    Environ Pollut; 2022 Jun; 302():119079. PubMed ID: 35245623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological and Chemical Approaches for Controlling Harmful Microcystis Blooms.
    Kim W; Park Y; Jung J; Jeon CO; Toyofuku M; Lee J; Park W
    J Microbiol; 2024 Mar; 62(3):249-260. PubMed ID: 38587591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The characteristics and algicidal mechanisms of cyanobactericidal bacteria, a review.
    Yang C; Hou X; Wu D; Chang W; Zhang X; Dai X; Du H; Zhang X; Igarashi Y; Luo F
    World J Microbiol Biotechnol; 2020 Nov; 36(12):188. PubMed ID: 33241509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of algal harvest and hydrogen peroxide treatment in mitigating cyanobacterial blooms via an in situ mesocosm experiment.
    Fan F; Shi X; Zhang M; Liu C; Chen K
    Sci Total Environ; 2019 Dec; 694():133721. PubMed ID: 31400686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feedback Regulation between Aquatic Microorganisms and the Bloom-Forming Cyanobacterium
    Zhang M; Lu T; Paerl HW; Chen Y; Zhang Z; Zhou Z; Qian H
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31420344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The involvement of α-proteobacteria Phenylobacterium in maintaining the dominance of toxic Microcystis blooms in Lake Taihu, China.
    Zuo J; Hu L; Shen W; Zeng J; Li L; Song L; Gan N
    Environ Microbiol; 2021 Feb; 23(2):1066-1078. PubMed ID: 33145874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous Removal of the Freshwater Bloom-Forming Cyanobacterium
    Wang S; Yang S; Zuo J; Hu C; Song L; Gan N; Chen P
    Microorganisms; 2021 Jul; 9(8):. PubMed ID: 34442673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antagonistic actions of Paucibacter aquatile B51 and its lasso peptide paucinodin toward cyanobacterial bloom-forming Microcystis aeruginosa PCC7806.
    Cha Y; Kim W; Park Y; Kim M; Son Y; Park W
    J Phycol; 2024 Feb; 60(1):152-169. PubMed ID: 38073162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxic cyanobacteria induce coupled changes in gut microbiota and co-metabolite of freshwater gastropods.
    Ren X; Zhang J; Huang Y; Yang W; Lu K; Zhu J
    Environ Pollut; 2023 Dec; 338():122651. PubMed ID: 37797925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of flavonoids isolated from Tridax procumbens on the growth and toxin production of Microcystis aeruginos.
    Mecina GF; Chia MA; Cordeiro-Araújo MK; Bittencourt-Oliveira MDC; Varela RM; Torres A; González Molinillo JM; Macías FA; da Silva RMG
    Aquat Toxicol; 2019 Jun; 211():81-91. PubMed ID: 30954847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyanobacterial bloom mitigation by sanguinarine and its effects on aquatic microbial community structure.
    Lin Y; Chen A; Luo S; Kuang X; Li R; Lepo JE; Gu JD; Zeng Q; Shao J
    Environ Pollut; 2019 Oct; 253():497-506. PubMed ID: 31330342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grazing on Microcystis aeruginosa and degradation of microcystins by the heterotrophic flagellate Diphylleia rotans.
    Mohamed ZA; Al-Shehri AM
    Ecotoxicol Environ Saf; 2013 Oct; 96():48-52. PubMed ID: 23856124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fates of Microcystis aeruginosa cells and associated microcystins in sediment and the effect of coagulation process on them.
    Chen X; Xiang H; Hu Y; Zhang Y; Ouyang L; Gao M
    Toxins (Basel); 2013 Dec; 6(1):152-67. PubMed ID: 24380974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hepatotoxic shellfish poisoning: Accumulation of microcystins in Eastern oysters (Crassostrea virginica) and Asian clams (Corbicula fluminea) exposed to wild and cultured populations of the harmful cyanobacteria, Microcystis.
    Straquadine NRW; Kudela RM; Gobler CJ
    Harmful Algae; 2022 Jun; 115():102236. PubMed ID: 35623692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of phosphorus and bacterial phoX genes during the decomposition of Microcystis blooms in a mesocosm.
    Dai J; Chen D; Wu S; Wu X; Gao G; Tang X; Shao K; Lv X; Xue W; Yang Q; Zhu S
    PLoS One; 2018; 13(5):e0195205. PubMed ID: 29723219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibiotic-accelerated cyanobacterial growth and aquatic community succession towards the formation of cyanobacterial bloom in eutrophic lake water.
    Xu S; Jiang Y; Liu Y; Zhang J
    Environ Pollut; 2021 Dec; 290():118057. PubMed ID: 34467883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanobactericidal effect of Rhodococcus sp. isolated from eutrophic lake on Microcystis sp.
    Lee YK; Ahn CY; Kim HS; Oh HM
    Biotechnol Lett; 2010 Nov; 32(11):1673-8. PubMed ID: 20640876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research progress of advanced oxidation technology for the removal of Microcystis aeruginosa: a review.
    Zhai Q; Song L; Ji X; Yu Y; Ye J; Xu W; Hou M
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40449-40461. PubMed ID: 35347626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.