These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 3595313)
1. A highly repetitive DNA component common to all Cervidae: its organization and chromosomal distribution during evolution. Bogenberger JM; Neitzel H; Fittler F Chromosoma; 1987; 95(2):154-61. PubMed ID: 3595313 [TBL] [Abstract][Full Text] [Related]
2. Organization and chromosomal distribution of a novel repetitive DNA component from Muntiacus muntjak vaginalis with a repeat length of more than 40 kb. Benedum UM; Neitzel H; Sperling K; Bogenberger J; Fittler F Chromosoma; 1986; 94(4):267-72. PubMed ID: 3024931 [TBL] [Abstract][Full Text] [Related]
3. Characterization of X-chromosome specific satellite DNA of Muntiacus muntjak vaginalis. Bogenberger J; Schnell H; Fittler F Chromosoma; 1982; 87(1):9-20. PubMed ID: 6297861 [TBL] [Abstract][Full Text] [Related]
4. Localization of the repetitive telomeric sequence (TTAGGG)n in two muntjac species and implications for their karyotypic evolution. Scherthan H Cytogenet Cell Genet; 1990; 53(2-3):115-7. PubMed ID: 2369836 [TBL] [Abstract][Full Text] [Related]
5. Karyotype relationships among selected deer species and cattle revealed by bovine FISH probes. Frohlich J; Kubickova S; Musilova P; Cernohorska H; Muskova H; Vodicka R; Rubes J PLoS One; 2017; 12(11):e0187559. PubMed ID: 29112970 [TBL] [Abstract][Full Text] [Related]
6. Evolution of muntjac DNA. Schmidtke J; Brennecke H; Schmid M; Neitzel H; Sperling K Chromosoma; 1981; 84(2):187-93. PubMed ID: 7327043 [TBL] [Abstract][Full Text] [Related]
7. DNA cloning and hybridization in deer species supporting the chromosome field theory. Lima-de-Faria A; Arnason U; Widegren B; Isaksson M; Essen-Möller J; Jaworska H Biosystems; 1986; 19(3):185-212. PubMed ID: 3022841 [TBL] [Abstract][Full Text] [Related]
8. Chromosomal evolution in Cervidae. Fontana F; Rubini M Biosystems; 1990; 24(2):157-74. PubMed ID: 2249009 [TBL] [Abstract][Full Text] [Related]
9. The muntjak satellite IA sequence is composed of 31-base-pair internal repeats that are highly homologous to the 31-base-pair subrepeats of the bovine satellite 1.715. Bogenberger JM; Neumaier PS; Fittler F Eur J Biochem; 1985 Apr; 148(1):55-9. PubMed ID: 3979396 [TBL] [Abstract][Full Text] [Related]
10. New evidence for tandem chromosome fusions in the karyotypic evolution of Asian muntjacs. Lin CC; Sasi R; Fan YS; Chen ZQ Chromosoma; 1991 Oct; 101(1):19-24. PubMed ID: 1769270 [TBL] [Abstract][Full Text] [Related]
11. Characterisation of a tandem repetitive sequence cloned from the deer Capreolus capreolus and its chromosomal localisation in two muntjac species. Scherthan H Hereditas; 1991; 115(1):43-9. PubMed ID: 1774183 [TBL] [Abstract][Full Text] [Related]
12. A molecular cytogenetic analysis of the tribe Bovini (Artiodactyla: Bovidae: Bovinae) with an emphasis on sex chromosome morphology and NOR distribution. Gallagher DS; Davis SK; De Donato M; Burzlaff JD; Womack JE; Taylor JF; Kumamoto AT Chromosome Res; 1999; 7(6):481-92. PubMed ID: 10560971 [TBL] [Abstract][Full Text] [Related]
13. Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial DNA phylogeny. Wang W; Lan H Mol Biol Evol; 2000 Sep; 17(9):1326-33. PubMed ID: 10958849 [TBL] [Abstract][Full Text] [Related]
14. Repetitive sequence families in Alces alces americana. Blake RD; Wang JZ; Beauregard L J Mol Evol; 1997 May; 44(5):509-20. PubMed ID: 9115175 [TBL] [Abstract][Full Text] [Related]
15. Conservation of repetitive DNA sequences in deer species studied by southern blot transfer. Lima-de-Faria A; Arnason U; Widegren B; Essen-Möller J; Isaksson M; Olsson E; Jaworska H J Mol Evol; 1984; 20(1):17-24. PubMed ID: 6330373 [TBL] [Abstract][Full Text] [Related]
16. Localization of cloned, repetitive DNA sequences in deer species and its implications for maintenance of gene territory. Scherthan H; Arnason U; Lima-de-Faria A Hereditas; 1990; 112(1):13-20. PubMed ID: 2361878 [TBL] [Abstract][Full Text] [Related]
17. A reappraisal of the tandem fusion theory of karyotype evolution in Indian muntjac using chromosome painting. Yang F; O'Brien PC; Wienberg J; Ferguson-Smith MA Chromosome Res; 1997 Apr; 5(2):109-17. PubMed ID: 9146914 [TBL] [Abstract][Full Text] [Related]
18. Evolution and recombination of bovine DNA repeats. Jobse C; Buntjer JB; Haagsma N; Breukelman HJ; Beintema JJ; Lenstra JA J Mol Evol; 1995 Sep; 41(3):277-83. PubMed ID: 7563113 [TBL] [Abstract][Full Text] [Related]
19. Phylogenetic relationships and the primitive X chromosome inferred from chromosomal and satellite DNA analysis in Bovidae. Chaves R; Guedes-Pinto H; Heslop-Harrison JS Proc Biol Sci; 2005 Oct; 272(1576):2009-16. PubMed ID: 16191610 [TBL] [Abstract][Full Text] [Related]
20. Localization and characterization of recombinant DNA clones derived from the highly repetitive DNA sequences in the Indian muntjac cells: their presence in the Chinese muntjac. Yu LC; Lowensteiner D; Wong EF; Sawada I; Mazrimas J; Schmid C Chromosoma; 1986; 93(6):521-8. PubMed ID: 3015505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]