These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 35953189)
1. Co-utilization of saccharides in mixtures: Moving toward a new understanding of carbon metabolism in Streptococcus thermophilus. Gasser C; Garault P; Chervaux C; Monnet V; Faurie JM; Rul F Food Microbiol; 2022 Oct; 107():104080. PubMed ID: 35953189 [TBL] [Abstract][Full Text] [Related]
2. Regulation of lactose, glucose and sucrose metabolisms in S. thermophilus. Gasser C; Faurie JM; Rul F Food Microbiol; 2024 Aug; 121():104487. PubMed ID: 38637064 [TBL] [Abstract][Full Text] [Related]
3. Enhancing the Sweetness of Yoghurt through Metabolic Remodeling of Carbohydrate Metabolism in Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. Sørensen KI; Curic-Bawden M; Junge MP; Janzen T; Johansen E Appl Environ Microbiol; 2016 Jun; 82(12):3683-3692. PubMed ID: 27107115 [TBL] [Abstract][Full Text] [Related]
4. Comparative Peptidomic and Metatranscriptomic Analyses Reveal Improved Gamma-Amino Butyric Acid Production Machinery in Levilactobacillus brevis Strain NPS-QW 145 Cocultured with Streptococcus thermophilus Strain ASCC1275 during Milk Fermentation. Xiao T; Yan A; Huang JD; Jorgensen EM; Shah NP Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33067198 [TBL] [Abstract][Full Text] [Related]
5. Streptococcus thermophilus growth in soya milk: Sucrose consumption, nitrogen metabolism, soya protein hydrolysis and role of the cell-wall protease PrtS. Boulay M; Al Haddad M; Rul F Int J Food Microbiol; 2020 Dec; 335():108903. PubMed ID: 33065381 [TBL] [Abstract][Full Text] [Related]
6. Development and Optimisation of HILIC-LC-MS Method for Determination of Carbohydrates in Fermentation Samples. Pismennõi D; Kiritsenko V; Marhivka J; Kütt ML; Vilu R Molecules; 2021 Jun; 26(12):. PubMed ID: 34208735 [TBL] [Abstract][Full Text] [Related]
7. Genomic and phenotypic analyses of exopolysaccharide biosynthesis in Streptococcus thermophilus S-3. Xiong ZQ; Kong LH; Lai PF; Xia YJ; Liu JC; Li QY; Ai LZ J Dairy Sci; 2019 Jun; 102(6):4925-4934. PubMed ID: 30928267 [TBL] [Abstract][Full Text] [Related]
8. Effect of lactose hydrolysis on the milk-fermenting properties of Lactobacillus delbrueckii ssp. bulgaricus 2038 and Streptococcus thermophilus 1131. Yamamoto E; Watanabe R; Ichimura T; Ishida T; Kimura K J Dairy Sci; 2021 Feb; 104(2):1454-1464. PubMed ID: 33309355 [TBL] [Abstract][Full Text] [Related]
9. Genome-Scale Metabolic Modeling Combined with Transcriptome Profiling Provides Mechanistic Understanding of Streptococcus thermophilus CH8 Metabolism. Rau MH; Gaspar P; Jensen ML; Geppel A; Neves AR; Zeidan AA Appl Environ Microbiol; 2022 Aug; 88(16):e0078022. PubMed ID: 35924931 [TBL] [Abstract][Full Text] [Related]
10. Effects of different carbon sources on metabolic profiles of carbohydrates in Streptococcus thermophilus during fermentation. Song X; Hou C; Yang Y; Ai L; Xia Y; Wang G; Yi H; Xiong Z J Sci Food Agric; 2022 Aug; 102(11):4820-4829. PubMed ID: 35229301 [TBL] [Abstract][Full Text] [Related]
11. Short communication: Lactose utilization of Streptococcus thermophilus and correlations with β-galactosidase and urease. Yu P; Li N; Geng M; Liu Z; Liu X; Zhang H; Zhao J; Zhang H; Chen W J Dairy Sci; 2020 Jan; 103(1):166-171. PubMed ID: 31704010 [TBL] [Abstract][Full Text] [Related]
12. Development of a milk-based medium for the selection of urease-defective mutants of Streptococcus thermophilus. Scala GD; Volontè F; Ricci G; Pedersen MB; Arioli S; Mora D Int J Food Microbiol; 2019 Nov; 308():108304. PubMed ID: 31425789 [TBL] [Abstract][Full Text] [Related]
13. Short communication: Transcriptional response to a large genomic island deletion in the dairy starter culture Streptococcus thermophilus. Selle K; Andersen JM; Barrangou R J Dairy Sci; 2019 Sep; 102(9):7800-7806. PubMed ID: 31279547 [TBL] [Abstract][Full Text] [Related]
14. Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9. Goh YJ; Goin C; O'Flaherty S; Altermann E; Hutkins R Microb Cell Fact; 2011 Aug; 10 Suppl 1(Suppl 1):S22. PubMed ID: 21995282 [TBL] [Abstract][Full Text] [Related]
15. Milk fermentation by monocultures or co-cultures of Han M; Wu Y; Guo X; Jiang L; Wang X; Gai Z Front Bioeng Biotechnol; 2022; 10():1097013. PubMed ID: 36578511 [TBL] [Abstract][Full Text] [Related]
16. Molecular and biochemical analysis of the galactose phenotype of dairy Streptococcus thermophilus strains reveals four different fermentation profiles. de Vin F; Rådström P; Herman L; De Vuyst L Appl Environ Microbiol; 2005 Jul; 71(7):3659-67. PubMed ID: 16000774 [TBL] [Abstract][Full Text] [Related]
17. New Insights into Various Production Characteristics of Streptococcus thermophilus Strains. Cui Y; Xu T; Qu X; Hu T; Jiang X; Zhao C Int J Mol Sci; 2016 Oct; 17(10):. PubMed ID: 27754312 [No Abstract] [Full Text] [Related]
18. Selection of a galactose-positive mutant strain of Streptococcus thermophilus and its optimized production as a high-vitality starter culture. Hu H; Qimu G; Nie J; Wu N; Dan T J Dairy Sci; 2024 Sep; 107(9):6558-6575. PubMed ID: 38754828 [TBL] [Abstract][Full Text] [Related]
19. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus. Solem C; Koebmann B; Jensen PR Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381 [TBL] [Abstract][Full Text] [Related]